
A Practical Guide to Randomized Matrix
Computations with MATLAB

Implementations1

Shusen Wang
wssatzju@gmail.com

November 4, 2015

1Sample MATLAB code with demos is available at https://github.com/wangshusen/RandMatrixMatlab.

ar
X

iv
:1

50
5.

07
57

0v
6 

 [
cs

.M
S]

  3
 N

ov
 2

01
5



2



Contents

Abstract 1

1 Introduction 3

2 Elementary Matrix Algebra 5

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Matrix Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Matrix (Pseudo) Inverse and Orthogonal Projector . . . . . . . . . . . . . . 6

2.4 Time and Memory Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Matrix Sketching 9

3.1 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Random Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Gaussian Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2 Subsampled Randomized Hadamard Transform (SRHT) . . . . . . . 11

3.2.3 Count Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.4 GaussianProjection + CountSketch . . . . . . . . . . . . . . . . . . . 14

3.3 Column Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 Uniform Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.2 Leverage Score Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 Local Landmark Selection . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Regression 19

4.1 Standard Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Inexact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Theoretical Explanation . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Machine-Precision Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Basic Idea: Preconditioning . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Extension: CX-Type Regression . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Extension: CUR-Type Regression . . . . . . . . . . . . . . . . . . . . . . . . 23

i



5 Rank k Singular Value Decomposition 25
5.1 Standard Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Prototype Randomized k-SVD Algorithm . . . . . . . . . . . . . . . . . . . . 26

5.2.1 Theoretical Explanation . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Algorithm Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Faster Randomized k-SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.1 Theoretical Explanation . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Algorithm Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 SPSD Matrix Sketching 31
6.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Forming a Kernel Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.2 Matrix Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.1.3 Eigenvalue Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Prototype Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Faster SPSD Matrix Sketching . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 The Nyström Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.5 More Efficient Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5.1 Memory Efficient Kernel Approximation (MEKA) . . . . . . . . . . . 37
6.5.2 Structured Kernel Interpolation (SKI) . . . . . . . . . . . . . . . . . 38

6.6 Extension to Rectangular Matrices: CUR Matrix Decomposition . . . . . . . 38
6.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.6.2 Prototype CUR Decomposition . . . . . . . . . . . . . . . . . . . . . 39
6.6.3 Faster CUR Decomposition . . . . . . . . . . . . . . . . . . . . . . . 39

6.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.7.1 Kernel Principal Component Analysis (KPCA) . . . . . . . . . . . . 41
6.7.2 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7.3 Gaussian Process Regression (GPR) . . . . . . . . . . . . . . . . . . . 43

A Several Facts of Matrix Algebra 47

B Notes and Further Reading 49

Bibliography 49

ii



Abstract

Matrix operations such as matrix inversion, eigenvalue decomposition, singular value de-
composition are ubiquitous in real-world applications. Unfortunately, many of these matrix
operations so time and memory expensive that they are prohibitive when the scale of data
is large. In real-world applications, since the data themselves are noisy, machine-precision
matrix operations are not necessary at all, and one can sacrifice a reasonable amount of
accuracy for computational efficiency.

In recent years, a bunch of randomized algorithms have been devised to make matrix
computations more scalable. Mahoney [16] and Woodruff [34] have written excellent but
very technical reviews of the randomized algorithms. Differently, the focus of this paper is
on intuition, algorithm derivation, and implementation. This paper should be accessible to
people with knowledge in elementary matrix algebra but unfamiliar with randomized matrix
computations. The algorithms introduced in this paper are all summarized in a user-friendly
way, and they can be implemented in lines of MATLAB code. The readers can easily follow
the implementations even if they do not understand the maths and algorithms.

Keywords: matrix computation, randomized algorithms, matrix sketching, random projec-
tion, random selection, least squares regression, randomized SVD, matrix inversion, eigen-
value decomposition, kernel approximation, the Nyström method.

1



2



Chapter 1

Introduction

Matrix computation plays a key role in modern data science. However, matrix computations
such as matrix inversion, eigenvalue decomposition, SVD, etc, are very time and memory
expensive, which limits their scalability and applications. To make large-scale matrix com-
putation possible, randomized matrix approximation techniques have been proposed and
widely applied. Especially in the past decade, remarkable progresses in randomized numer-
ical linear algebra has been made, and now large-scale matrix computations are no longer
impossible tasks.

This paper reviews the most recent progresses of randomized matrix computation. The
papers written by Mahoney [16] and Woodruff [34] provide comprehensive and rigorous
reviews of the randomized matrix computation algorithms. However, their focus are on the
theoretical properties and error analysis techniques, and readers unfamiliar with randomized
numerical linear algebra can have difficulty when implementing their algorithms.

Differently, the focus of this paper is on intuitions and implementations, and the target
readers are those who are familiar with basic matrix algebra but has little knowledge in
randomized matrix computations. All the algorithms in this paper are described in a user-
friend way. This paper also provides MATLAB implementations of the important algorithms.
MATLAB code is easy to understand1, easy to debug, and easy to translate to other lan-
guages. The users can even directly use the provided MATLAB code without understanding
it.

This paper covers the following topics:

• Chapter 2 briefly reviews some matrix algebra preliminaries. This chapter can be
skipped if the reader is familiar with matrix algebra.

• Chapter 3 introduces the techniques for generating a sketch of a large-scale matrix.

• Chapter 4 studies the least squares regression (LSR) problem where n� d.

• Chapter 5 studies efficient algorithms for computing the k-SVD of arbitrary matrices.

1If your are unfamiliar with a MATLAB function, you can simply type “help + functionname” in MAT-
LAB and read the documentation.

3



• Chapter 6 introduces techniques for sketching symmetric positive semi-definite (SPSD)
matrices. The applications includes spectral clustering, kernel methods (e.g. Gaussian
process regression and kernel PCA), and second-order optimization (e.g. Newton’s
method).

4



Chapter 2

Elementary Matrix Algebra

This chapter defines the matrix notation and goes through the very basics of matrix decom-
positions. Particularly, the singular value decomposition (SVD), the QR decomposition, and
the Moore-Penrose inverse are used throughout this paper.

2.1 Notation

Let A = [aij] be a matrix, a = [ai] be a column vector, and a be a scalar. The i-th row
and j-th column of A are denoted by ai: and a:j, respectively. When there is no ambiguity,
either column or row can be written as al. Let In be the n× n identity matrix, that is, the
diagonal entries are ones and off-diagonal entries are zeros. The column space (the space
spanned by the columns) of A is the set of all possible linear combinations of its column
vectors. Let [n] be the set {1, 2, · · · , n}. Let nnz(A) be the number of nonzero entries of A.

The squared vector `2 norm is defined by

‖a‖2
2 =

∑
i

a2
i .

The squared matrix Frobenius norm is defined by

‖A‖F =
∑
ij

a2
ij,

and the matrix spectral norm is defined by

‖A‖2 = max
x 6=0

‖Ax‖2

‖x‖2

.

2.2 Matrix Decompositions

QR decomposition. Let A be an m×n matrix with m ≥ n. The QR decomposition of A
is

A = QA︸︷︷︸
m×n

RA︸︷︷︸
n×n

.

5



The matrix QA has orthonormal columns, that is, QT
AQA = In. The matrix RA is upper

triangular, that is, for all i < j, the (i, j)-th entry of RA is zero.
SVD. Let A be an m × n matrix and ρ = rank(A). The condensed singular value

decomposition (SVD) of A is

A︸︷︷︸
m×n

= UA︸︷︷︸
m×ρ

ΣA︸︷︷︸
ρ×ρ

VT
A︸︷︷︸

ρ×n

=

ρ∑
i=1

σA,iuA,iv
T
A,i.

Here σA,1 ≥ · · · ≥ σA,ρ > 0 are the singular values, uA,1, · · · ,uA,ρ ∈ Rm are the left singular
vectors, and vA,1, · · · ,vA,ρ ∈ Rn are the right singular vectors. Unless otherwise specified,
“SVD” refers to the condensed SVD.

k-SVD. In applications such as the principal component analysis (PCA), latent semantic
indexing (LSI), word2vec, spectral clustering, we are only interested in the top k (� m,n)
singular values and singular vectors. The rank k truncated SVD (k-SVD) is denoted by

Ak :=
k∑
i=1

σA,iuA,iv
T
A,i = UA,k︸ ︷︷ ︸

m×k

ΣA,k︸︷︷︸
k×k

VT
A,k︸ ︷︷ ︸

k×n

.

Here UA,k consists of the first k singular vectors of UA, and ΣA,k and VV,k are analogously
defined. Among all the m×n rank k matrices, Ak is the closest approximation to A in that

Ak = argmin
X
‖A−X‖2

F = argmin
X
‖A−X‖2

2, s.t. rank(X) ≤ k.

Eigenvalue decomposition. The eigenvalue decomposition of an n × n symmetric
matrix A is defined by

A = UAΛAUT
A =

n∑
i=1

λA,iuA,iu
T
A,i.

Here λA,1 ≥ · · · ≥ λA,n are the eigenvalues of A, and uA,1, · · · ,uA,n ∈ Rn are the correspond-
ing eigenvectors. A symmetric matrix A is called symmetric positive semidefinite (SPSD)
if and only if all the eigenvalues are nonnegative. If A is SPSD, its SVD and eigenvalue
decomposition are identical.

2.3 Matrix (Pseudo) Inverse and Orthogonal Projector

For an n× n square matrix A, the matrix inverse exists if A is non-singular (rank(A) = n).
Let A−1 be the inverse of A. Then AA−1 = A−1A = In.

Only square and full rank matrices have inverse. For the general rectangular matrices or
rank deficient matrices, matrix pseudo-inverse is used as a generalization of matrix inverse.
The book [1] offers a comprehensive study of the pseudo-inverses.

6



The Moore-Penrose inverse is the most widely used pseudo-inverse, which is defined by

A† := VAΣ−1
A UT

A.

Let A be any m× n and rank ρ matrix. Then

AA† = UAΣA VT
AVA︸ ︷︷ ︸
=Iρ

Σ−1
A UT

A = UA︸︷︷︸
m×ρ

UT
A︸︷︷︸

ρ×m

,

which is a orthogonal projector. It is because for any matrix B, the matrix AA†B = UAUT
AB

is the projection of B onto the column space of A.

2.4 Time and Memory Costs

The time complexities of the matrix operations are listed in the following.

• Multiplying an m× n matrix A by an n× p matrix B: O(mnp) float point operations
(flops) in general, and O(p · nnz(A)) if A is sparse. Here nnz(A) is the number of
nonzero entries of A.

• QR decomposition, SVD, or Moore-Penrose inverse of an m × n matrix (m ≥ n):
O(mn2) flops.

• k-SVD of an m × n matrix: O(nmk) flops (assuming that the spectral gap and the
logarithm of error tolerance are constant)

• Matrix inversion or full eigenvalue decomposition of an n× n matrix: O(n3) flops

• k-eigenvalue decomposition of an n× n matrix: O(n2k) flops.

Pass-efficient means that the algorithm goes constant passes through the data. For
example, the Frobenius norm of a matrix can be computed pass-efficiently, because each
entry is visited only once. In comparison, the spectral norm cannot be computed pass-
efficiently, because the algorithm goes at least log 1

ε
passes through the matrix, which is not

constant. Here ε indicates the desired precision.
Memory cost. If an algorithm scans a matrix for constant passes, the matrix can be

placed in large volume disks, so the memory cost is not a bottleneck. However, if an algorithm
goes through a matrix for many passes (not constant passes), the matrix should be placed
in memory, otherwise the swaps between memory and disk would be highly expensive. In
this paper, memory cost means the number of entries frequently visited by the algorithm.

7



8



Chapter 3

Matrix Sketching

Let A ∈ Rm×n be the given matrix, S ∈ Rn×s be a sketching matrix, e.g. random projection
or column selection matrix, and C = AS ∈ Rm×s be a sketch of A. The size of C is much
smaller than A, but C preserves some important properties of A.

3.1 Theoretical Properties

The sketching matrix is useful if it has either or both of the following properties. The two
properties are important, and the readers should try to understand them.

Property 3.1 (Subspace Embedding). For a fixed m × n (m � n) matrix A and all m-
dimension vector y, the inequality

1

γ
≤ ‖y

TAS‖2
2

‖yTA‖2
2

≤ γ

holds with high probability. Here S ∈ Rn×s (s� n) is a certain sketching matrix.

The subspace embedding property can be intuitively understood in the following way.
For all n dimensional vectors x in the row space of A (a rank m subspace within Rn),1 the
length of vector x does not change much after sketching: ‖x‖2

2 ≈ ‖xS‖2
2. This property can

be applied to speedup the `2 regression problems.

Property 3.2 (Low-Rank Approximation). Let A be any m×n matrix and k be any positive
integer far smaller than m and n. Let C = AS ∈ Rm×s where S ∈ Rn×s is a certain sketching
matrix and s ≥ k. The Frobenius norm error bound2

‖A−CC†A‖2
F ≤ η‖A−Ak‖2

F

holds with high probability for some η ≥ 1.

1Thus there always exists an m dimensional vector y such that x can be expressed as x = yTA.
2Spectral norm bounds should be more interesting. However, spectral norm error is difficult to analyze,

and existing spectral norm bounds are “weak” for their factors η are far greater than 1.

9



The following error bound is stronger and more interesting:

min
rank(X)≤k

‖A−CX‖2
F ≤ η‖A−Ak‖2

F .

It is stronger because ‖A−CC†A‖2
F ≤ minrank(X)≤k ‖A−CX‖2

F .

Intuitively speaking, the low-rank approximation property means that the columns of Ak

are almost in the column space of C = AP. The low-rank approximation property enables
us to solve k-SVD more efficiently (for k ≤ s). Later on we will see that computing the
k-SVD of CC†A is less expensive than the k-SVD of A.

The two properties can be verified by a few lines of MATLAB code. The readers are
encouraged to have a try. With a proper sketching method and a relatively large s, both γ
and η should be near one.

3.2 Random Projection

The section presents three matrix sketching techniques: Gaussian projection, subsampled
randomized Hadamard transform (SRHT), and count sketch. Gaussian projection and SRHT
can be combined with count sketch.

3.2.1 Gaussian Projection

The n× s Gaussian random projection matrix S is a matrix is formed by S = 1√
s
G, where

each entry of G is sampled i.i.d. from N (0, 1). The Gaussian projection is also well knows
as the Johnson-Lindenstrauss transform due to the seminal work [15]. Gaussian projection
can be implemented in four lines of MATLAB code.

1 f unc t i on [C] = Gauss ianPro jec t ion (A, s )
2 n = s i z e (A, 2) ;
3 S = randn (n , s ) / s q r t ( s ) ;
4 C = A ∗ S ;

Gaussian projection has the following properties:

• Time cost: O(mns)

• Theoretical guarantees

1. When s = O(m/ε2), the subspace embedding property with γ = 1 + ε holds with
high probability.

2. When s = k
ε

+ 1, the low-rank approximation property with η = 1 + ε holds in
expectation [3].

• Advantages

10



1. Easy to implement: four lines of MATLAB code

2. C is a very high quality sketch of A

• Disadvantages:

1. High time complexity to perform matrix multiplication

2. Sparsity is destroyed: C is dense even if A is sparse

3.2.2 Subsampled Randomized Hadamard Transform (SRHT)

The Subsampled Randomized Hadamard Transform (SRHT) matrix is defined by S =
1√
sn

DHnP, where

• D ∈ Rn×n is a diagonal matrix with diagonal entries sampled uniformly from {+1,−1};

• Hn ∈ Rn×n is defined recursively by

Hn =

[
Hn/2 Hn/2

Hn/2 −Hn/2

]
and H2 =

[
+1 +1
+1 −1

]
;

For all y ∈ Rn, the matrix vector product yTHn can be performed in O(n log n) time
by the fast Walsh–Hadamard transform algorithm in a divide-and-conquer fashion;

• P ∈ Rn×s samples s from the n columns.

SRHT can be implemented in nine lines of MATLAB code below. Notice that this imple-
mentation of SRHT is has O(mN logN) (N ≥ n is a power of two) time complexity, which
is not efficient.

1 f unc t i on [C] = s rht (A, s )
2 n = s i z e (A, 2) ;
3 sgn = randi (2 , [ 1 , n ] ) ∗ 2 − 3 ; % one h a l f are +1 and the r e s t are −1
4 A = bsxfun ( @times , A, sgn ) ; % f l i p the s i g n s o f each column w. p . 50%
5 n = 2ˆ( c e i l ( l og2 (n) ) ) ;
6 C = ( fwht (A’ , n ) ) ’ ; % f a s t Walsh−Hadarmard trans form
7 idx = s o r t ( randsample (n , s ) ) ;
8 C = C( : , idx ) ; % subsampling
9 C = C ∗ (n / s q r t ( s ) ) ;

The SRHT matrix has the following properties:

• Time complexity: the matrix product AS can be performed in O(mn log s) time, which
makes SRHT more efficient than Gaussian projection. (Unfortunately, the MATLAB
code above does not have such low time complexity.)

• Theoretical property: when s = O(ε−2(m+ log n) logm), SRHT satisfies the subspace
embedding property with γ = 1 + ε holds with probability 0.99 [34, Theorem 7].

11



2     3 1 2     1     1     1     1     1     1     3 2     2     2     2

Example:
• Matrix size 9 × 15
• Sketch size 𝑠 = 3

(a) Hash each column with a value uniformly sampled from [s] = {1, 2, 3}.

+1   +1    -1   +1   -1  -1   +1           -1    -1    -1 +1    -1    -1   -1    +1

sum sum sum

1     1     1     1     1 1     1            2     2     2     2     2     2            3     3 1 2 3

(b) Flip the sign of each column with probability 50%, and then sum up columns with the same
hash value.

Figure 3.1: Count sketch in the map-reduce fashion.

3.2.3 Count Sketch

Count sketch stems from the data stream literature [4; 26]. It was applied to speedup matrix
computation by [6; 21]. We describe in the following the count sketch for matrix data.

There are different ways to implementing count sketch. This paper describe two quite
different ways and refer to them as “map-reduce fashion” and “streaming fashion”. Of
course, the two are equivalent.

• The map-reduce fashion has three steps. First, hash each column with a discrete value
uniformly sampled from [s]. Second, flip the sign of each column with probability 50%.
Third, sum up columns with the same hash value. This procedure is illustrated in

12



Algorithm 3.1 Count Sketch in the Streaming Fashion.

1: input: A ∈ Rm×n.
2: Initialize C to be an m× s all-zero matrix;
3: for i = 1 to n do
4: sample l from the set [s] uniformly at random;
5: sample g from the set {+1,−1} uniformly at random;
6: update the l-th column of C by c:l ←− c:l + ga:i;
7: end for
8: return C ∈ Rm×s.

Figure 3.1. As its name suggests, this approach naturally fits the map-reduce systems.

• The streaming fashion has two steps. First, initialize C to be the m × s all-zero
matrix. Second, for each column of A, flip its sign with probability 50%, and add it
to a uniformly selected column of C. It is described in Algorithm 3.1 an illustrated
in Figure 3.2. It can be implemented in 9 lines of MATLAB code as below. The
streaming fashion implementation keeps the sketch C in memory and scans the data
A in only one pass. If A does not fit in memory, this approach is better than the map-
reduce fashion for it scans the columns sequentially. If A is sparse matrix, randomly
accessing the entries may not be efficient, and thus it is better to accessing the column
sequentially.

1 f unc t i on [C] = CountSketch (A, s ) % the streaming f a s h i o n
2 [m, n ] = s i z e (A) ;
3 sgn = randi (2 , [ 1 , n ] ) ∗ 2 − 3 ; % one h a l f are +1 and the r e s t are −1
4 A = bsxfun ( @times , A, sgn ) ; % f l i p the s i g n s o f each column w. p . 50%
5 l l = randsample ( s , n , t rue ) ; % sample n items from [ s ] with replacement
6 C = ze ro s (m, s ) ; % i n i t i a l i z e C
7 f o r j = 1 : n
8 C( : , l l ( j ) ) = C( : , l l ( j ) ) + A( : , j ) ;
9 end

The readers may have noticed that count sketch does not explicitly form the sketching
matrix S. In fact, S is such a matrix that each row has only one nonzero entry. In the
example of Figure 3.1, the matrix ST can be explicitly expressed as

ST =

 0 0 1 0 1 −1 1 −1 −1 1 0 0 0 0 0
−1 0 0 −1 0 0 0 0 0 0 0 −1 1 −1 −1
0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0

 .
Count sketch has the following properties:

• Time cost: O(nnz(A))

• Memory cost: O(ms). When A does not fit in memory, the algorithm keeps only C in
memory and goes one pass through the columns of A.

13



                            

                

A C 

Figure 3.2: Count sketch in the streaming fashion.

• Theoretical guarantees

1. When s = O(m2/ε2), the subspace embedding property holds with γ = 1 + ε with
high probability.

2. When s = O(k/ε+k2), the low-rank approximation property holds with η = 1+ ε
relative error with high probability.

• Advantage: the count sketch is very efficient, especially when A is sparse.

• Disadvantage: compared with Gaussian projection, the count sketch requires larger s
to attain the same accuracy. One simple improvement is to combine the count sketch
with Gaussian projection or SRHT.

3.2.4 GaussianProjection + CountSketch

Let Ssc be n × scs count sketch matrix, Sgp be scs × s Gaussian projection matrix, and
S = ScsSgp ∈ Rn×s. Then S satisfies the following properties.

• Time complexity: the matrix product AS can be computed in

O
(

nnz(A)︸ ︷︷ ︸
count sketch

+ mscss︸ ︷︷ ︸
Gaussian projection

)
time.

• Theoretical properties:

14



1. When scs = O(m2/ε2) and s = O(m/ε2), the GaussianProjection+CountSketch
matrix S satisfy the subspace embedding property with γ = 1 + ε holds with high
probability.

2. When scs = O(k2 + k/ε) and s = O(k/ε), the GaussianProjection+CountSketch
matrix S satisfies the low-rank approximation property with η = 1 + ε [2, Lemma
12].

• Advantages:

1. the size of GaussianProjection+CountSketch is as small as Gaussian projection.

2. the time complexity is much lower than Gaussian projection when n� m.

3.3 Column Selection

This section presents three column selection techniques: uniform sampling, leverage score
sampling, and local landmark selection. Different from random projection, column selection
do not have to visit every entry of A, and column selection preserves the sparsity/non-
negativity properties of A.

3.3.1 Uniform Sampling

Uniform sampling is the most efficient way to form a sketch. The most important advantage
is that uniform sampling forms a sketch without seeing the whole data matrix. When applied
to kernel methods, uniform sampling avoids computing every entry of the kernel matrix.

The performance of uniform sampling is data-dependent. When the leverage scores (de-
fined in Section 3.3.2) are uniform, or equivalently, the matrix coherence (namely the greatest
leverage score) is small, uniform sampling has good performance. The analysis of uniform
sampling can be found in [12; 13].

3.3.2 Leverage Score Sampling

Before studying leverage score sampling, let’s first define leverage scores. Let A be an m×n
matrix, with ρ = rank(A) < n, and V ∈ Rn×ρ be the right singular vectors. The (column)
leverage scores of A are defined by

li := ‖vi:‖2
2, for i = 1, · · · , n.

Leverage score sampling is to select each columns of A with probability proportional to its

leverage scores. (Sometimes each selected column should be scaled by
√

ρ
sli

.) It can be

roughly implemented in 8 lines MATLAB code.

15



1 f unc t i on [C, idx ] = LeverageScoreSampling (A, s )
2 n = s i z e (A, 2) ;
3 [ ˜ , ˜ , V] = svd (A, ’ econ ’ ) ;
4 l e v e r a g e s c o r e s = sum(V. ˆ 2 , 2) ;
5 prob = l e v e r a g e s c o r e s / sum( l e v e r a g e s c o r e s ) ;
6 idx = randsample (n , s , true , prob ) ;
7 idx = unique ( idx ) ; % e l i m i n a t e d u p l i c a t e s
8 C = A( : , idx ) ;

There are a few things to remark:

• To sample columns according to the leverage scores of Ak where k � m,n, Line 3 can
be replaced by

3 [ ˜ , ˜ , V] = svds (A, k ) ;

• Theoretical properties

1. When s = O(m/ε + m logm), the leverage score sampling satisfies the subspace
embedding property with γ = 1 + ε holds with high probability.

2. When s = O(k/ε+k log k), the leverage score sampling (according to the leverage
scores of Ak) satisfies the low-rank approximation property with η = 1 + ε.

• Computing the leverage scores is as expensive as computing SVD, so leverage score
sampling is not a practical way to sketch the matrix A itself.

• When the leverage scores are near uniform, there is little difference between uniform
sampling and leverage score sampling.

3.3.3 Local Landmark Selection

Local landmark selection is a very effective heuristic for finding representative columns.
Zhang and Kwok [36] proposed to set k = s and run k-means or k-centroids clustering
algorithm to cluster the columns of A to s class, and use the s centroids as the sketch of A.
This heuristic works very well in practice, though it has little theoretical guarantee.

There are several tricks to make the local landmark selection more efficient.

• One can simply solve k-centroids clustering approximately rather than accurately. For
example, it is unnecessary to wait for k-centroids clustering to converge; running k-
centroids for a few iterations suffices.

• When n is large, one can uniformly sample a subset of the data, e.g. max{0.2n, 20s}
data points, and perform local landmark selection on this smaller dataset.

16



• In supervised learning problems, each datum ai is associated with a label yi. We can
partition the data to g groups according to the labels and run k-centroids clustering
independently on the data in each group. In this way, s = gk data points are selected
as a sketch of A.

17



18



Chapter 4

Regression

Let A be an n× d (n ≥ d) matrix whose rows correspond to data and columns correspond
to features, and let b ∈ Rn contain the response/label of each datum. The least squares
regression (LSR)

min
x
‖Ax− b‖2

2 (4.1)

is a ubiquitous problem in statistics, computer science, economics, etc. When n � d, LSR
can be efficiently solved using randomized algorithms.

4.1 Standard Solutions

The least squares regression (LSR) problem (4.1) has closed form solution

x? = A†b.

The Moore-Penrose inverse can be computed by SVD which costs O(nd2) time.
LSR can also be solved by numerical algorithms such as the conjugate gradient (CG)

algorithm, and machine-precision can be attained in a reasonable number of iterations. Let
κ(A) := σ1(A)

σd(A)
be the condition number of A. The convergence of CG depends on κ(A):

‖A(x(t) − x?)‖2
2

‖A(x(0) − x?)‖2
2

≤ 2

(
κ(A)− 1

κ(A) + 1

)t
,

where x(t) is the model in the t-th iteration of CG. The per-iteration time cost of CG is
O(nnz(A)). To attain ‖A(x(t) − x?)‖2

2 ≤ ε, the number of iteration is roughly(
log

1

ε
+ log(InitialError)

)κ(A)− 1

2
.

Since the time cost of CG heavily depends on the unknown condition number κ(A), CG can
be very slow if A is ill-conditioned.

19



4.2 Inexact Solution

Any sketching matrix S ∈ Rn×s can be used to solve LSR approximately as long as it satisfies
the subspace embedding property. We consider the following LSR problem:

x̃ = min
x
‖ (STA)︸ ︷︷ ︸

s×d

x− STb‖2
2, (4.2)

which can be solved in O(sd2) time.

If S is a Gaussian projection matrix, SRHT matrix, count sketch, or leverage score
sampling matrix, and s = poly(d/ε) for any error parameter ε ∈ (0, 1], then

‖Ax̃− b‖2
2 ≤ (1 + ε)2 min

x
‖Ax− b‖2

2

is guaranteed.

4.2.1 Implementation

If S is count sketch matrix, the inexact LSR algorithm can be implemented in 5 lines of
MATLAB code. Here CountSketch is a MATLAB function described in Section 3.2.3. The
total time cost is O(nnz(A) + poly(d/ε)) and memory cost is O(poly(d/ε)), which are lower
than the cost of exact LSR when d� n.

1 f unc t i on [ x t i l d e ] = InexactLSR (A, b , s )
2 d = s i z e (A, 2) ;
3 sketch = ( CountSketch ( [A, b ] ’ , s ) ) ’ ;
4 Asketch = sketch ( : , 1 : d ) ; % Asketch = S ’ ∗ A
5 bsketch = sketch ( : , end ) ; % bsketch = S ’ ∗ b
6 x t i l d e = Asketch \ bsketch ;

There are a few things to remark:

• The inexact LSR is useful only when n = Ω(d/ε+ d2).

• The size of sketch s is a polynomial function of ε−1 rather than logarithm of ε−1, thus
the algorithm cannot attain high precision.

4.2.2 Theoretical Explanation

By the subspace embedding property, it can be easily shown that x̃ is a good solution. Let
D = [A,b] ∈ Rn×(d+1) and z = [x;−1] ∈ Rn+1. Then

Ax− b = Dz and STAx− STb = STDz,

20



and the subspace embedding property indicates 1
η
‖Dz‖2

2 ≤ ‖STDz‖2
2 ≤ η‖Dz‖2

2 for all z.
Thus

1

η
‖Ax̃− b‖2

2 ≤ ‖ST (Ax̃− b)‖2
2 and ‖ST (Ax? − b)‖2

2 ≤ η‖Ax? − b‖2
2

The optimality of x̃ indicates ‖ST (Ax̃− b)‖2
2 ≤ ‖ST (Ax? − b)‖2

2, and thus

1

η
‖Ax̃− b‖2

2 ≤ ‖ST (Ax̃− b)‖2
2 ≤ ‖ST (Ax? − b)‖2

2 ≤ η‖Ax? − b‖2
2.

⇒ ‖Ax̃− b‖2
2 ≤ η2‖Ax? − b‖2

2.

Therefore, as long as S satisfies the subspace embedding property, the approximate solution
to LSR is nearly as good as the optimal solution (in terms of objective function value).

4.3 Machine-Precision Solution

Randomized algorithms can also be applied to find machine-precision solution to LSR, and
the time complexity is lower than the standard solutions. The state-of-the-art algorithm [18]
is based on very similar idea described in this section.

4.3.1 Basic Idea: Preconditioning

We have discussed previously that the time cost of the conjugate gradient (CG) algorithm
is roughly

κ(A)− 1

2

(
log

1

ε
+ log(InitialError)

)
nnz(A),

which dependents on the condition number of A. To make CG efficient, one can find a d× d
preconditioning matrix T such that κ(AT) is small, solve

z? = argmin
z
‖(AT)z− b‖2

2 (4.3)

by CG, and let x? = Tz?. In this way, the time cost of CG is roughly

κ(AT)− 1

2

(
log

1

ε
+ log(InitialError)

)
nnz(A).

If κ(AT) is a small constant, e.g. κ(AT) = 2, then (4.3) can be very efficiently solved by
CG.

Now let’s consider how to find the preconditioning matrix T. Let A = QARA be
the QR decomposition. Obviously T = R−1

A is a perfect preconditioning matrix because
κ(AR−1

A ) = κ(QA) = 1. Unfortunately, the preconditioning matrix T = R−1
A is not a

practical choice because computing the QR decomposition is as expensive as solving LSR.
Woodruff [34] proposed to use sketching to find RA approximately inO(nnz(A)+poly(d))

time. Let S ∈ Rn×s be a sketching matrix and form Y = STA. Let Y = QYRY be the QR
decomposition of Y. Theory shows that the sketch size s = O(d2) suffices for κ(AR−1

Y ) ≤ 2
holding with high probability. Thus R−1

Y ∈ Rd×d is a good preconditioning matrix.

21



Algorithm 4.1 Machine-Precision Solution to LSR.

1: input: A ∈ Rn×d, b ∈ Rn, and step size θ.
2: Draw a sketching matrix S ∈ Rn×s where s = O(d2);
3: Form the sketch Y = STA ∈ Rs×d;
4: Compute the QR decomposition Y = QYRY;
5: Compute the preconditioning matrix T = R−1

Y ;
6: Compute the initial solution z(0) = (STAT)†(STb) = QT

Y(STb);
7: for t = 1, · · · ,O(log ε−1) do
8: r(t) = b−ATz(t−1) ; // the residual
9: z(t) = z(t−1) + θTTAT r(t); // gradient descent

10: end for
11: return x? = Tz(t) ∈ Rd.

4.3.2 Algorithm Description

The algorithm is described in Algorithm 4.1. We first form a sketch Y = STA ∈ Rs×d and
compute its QR decomposition Y = QYRY. We can use this QR decomposition to find the
initial solution z(0) and the preconditioning matrix T = R−1

Y . If we set s = O(d2), the initial
solution is only constant times worse than the optimal in terms of objective function value.
Theory also ensures that the condition number κ(AT) ≤ 2. With the good initialization
and good condition number, the vanilla gradient descent1 or CG takes only O(log ε−1) steps
to attain 1 + ε solution. Notice that Lines 8 and 9 in the algorithm should be cautiously
implemented. Do not compute the matrix product AT because it would take O(nnz(A)d)
time!

4.4 Extension: CX-Type Regression

Given any matrix A ∈ Rm×n, CX decomposition considers decomposing A into A ≈ CX?,
where C ∈ Rm×c is a sketch of A and X? ∈ Rc×n is computed by

X? = argmin
X

∥∥A−CX
∥∥2

F
= C†A.

It takes O(mnc) time to compute X?. If c� m, this problem can be solved more efficiently
by sketching. Specifically, we can draw a sketching matrix S ∈ Rm×s and compute the
approximate solution

X̃ = argmin
X
‖STC︸︷︷︸

s×c

X︸︷︷︸
c×n

−STA︸︷︷︸
s×n

‖2
F = (STC)†(STA)

If S is a count sketch matrix, we set s = O(c/ε+ c2); if S samples columns according to the
row leverage scores of C, we set s = O(c/ε+ c log c). It holds with high probability that∥∥A−CX̃

∥∥2

F
≤ (1 + ε) min

X

∥∥A−CX
∥∥2

F
.

1Since AT is well conditioned, the vanilla gradient descent and CG has little difference.

22



4.5 Extension: CUR-Type Regression

A more complicated problem has also been considered in the literature [25; 29; 24]:

X? = argmin
X
‖ C︸︷︷︸
n×c

X︸︷︷︸
c×r

R︸︷︷︸
r×n

− A︸︷︷︸
m×n

‖2
F (4.4)

where c, r � m,n. The solution is:

X? = C†AR†,

which cost O(mn · min{c, r}) time. Wang et al. [31] proposed an algorithm to solve (4.4)
approximately by

X̃ = argmin
X
‖STC(CXR−A)SR‖2

F

where SC ∈ Rm×sc and SR ∈ Rn×sr are leverage score sampling matrices. When sc = c
√
q/ε

and sr = r
√
q/ε (where q = min{m,n}), it holds with high probability that

‖CX̃R−A‖2
F ≤ (1 + ε) min

X
‖CXR−A‖2

F .

The total time cost is

O(scsr ·min{c, r}) = O(crε−1 ·min{m,n} ·min{c, r})

time, which is useful when max{m,n} � c, r. The algorithm can be implemented in 4 lines
of MATLAB code:

1 f unc t i on [ Xt i lde ] = InexactCurTypeRegress ion (C, R, A, sc , s r )
2 [ ˜ , idxC ] = LeverageScoreSampling (C’ , sc ) ;
3 [ ˜ , idxR ] = LeverageScoreSampling (R, s r ) ;
4 Xt i lde = pinv (C( idxC , : ) ) ∗ A( idxC , idxR ) ∗ pinv (R( : , idxR ) ) ;

Here the function “LeverageScoreSampling” is described in Section 3.3.2. Empirically, setting
s1 = s2 = O(d1 + d2) suffices for high precision. The experiments in [31] indicates that
uniform sampling performs equally well as leverage score sampling.

23



24



Chapter 5

Rank k Singular Value Decomposition

This chapter considers the k-SVD of a large scale matrix A ∈ Rm×n, which may not fit in
memory.

5.1 Standard Solutions

The standard solutions to k-SVD include the power iteration algorithm and the Krylov
subspace methods. Their time complexities are considered to be Õ(mnk), where the Õ
notation hides parameters such as the spectral gap and logarithm of error tolerance. Here we
introduce a simplified version of the block Lanczos method [19]1 which costs time O(mnkq),
where q = log n

ε
is the number of iterations, and the inherent constant depends weakly on the

spectral gap. The block Lanczos algorithm is described in Algorithm 5.1 can be implemented
in 18 lines of MATLAB code.

1 f unc t i on [U, S , V] = BlockLanczos (A, k , q )
2 s = 2 ∗ k ; % can be tuned
3 [m, n ] = s i z e (A) ;
4 C = A ∗ randn (n , s ) ;
5 Krylov = ze ro s (m, s ∗ q ) ;
6 Krylov ( : , 1 : s ) = C;
7 f o r i = 2 : q
8 C = A’ ∗ C;
9 C = A ∗ C;

10 [C, ˜ ] = qr (C, 0) ; % opt i ona l
11 Krylov ( : , ( i −1)∗ s +1: i ∗ s ) = C;
12 end
13 [Q, ˜ ] = qr ( Krylov , 0) ;
14 [ Ubar , S , V] = svd (Q’ ∗ A, ’ econ ’ ) ;
15 Ubar = Ubar ( : , 1 : k ) ;
16 S = S ( 1 : k , 1 : k ) ;

1We introduce this algorithm because it is easy to understand. However, as q grows, columns of the
Krylov matrix gets increasingly linearly dependent, which sometimes leads to instability. Thus there are
many numerical treatments to strengthen stability (see the numerically stable algorithms in [23]).

25



Algorithm 5.1 k-SVD by the Block Lanczos Algorithm.
1: Input: an m× n matrix A and the target rank k.
2: Set s = k +O(1) be the over-sampling parameter;
3: Set q = O(log n

ε ) be the number of iteration;
4: Draw a n× s sketching matrix S;
5: C = AS;
6: Set K =

[
C, (AAT )C, (AAT )2C, · · · , (AAT )q−1C

]
;

7: QR decomposition: [ QC︸︷︷︸
m×sq

,RC] = qr( K︸︷︷︸
m×sq

);

8: SVD: [ Ū︸︷︷︸
sq×sq

, Σ︸︷︷︸
sq×sq

, V︸︷︷︸
n×sq

] = svd(QT
CA︸ ︷︷ ︸
s×n

);

9: Retain the top k components of Ū, Σ, and V to form sq × k, k × k, n× k matrices;
10: U = QŪ ∈ Rm×k;
11: return UΣVT ≈ Ak.

17 V = V( : , 1 : k ) ;
18 U = Q ∗ Ubar ;

Although the block Lanczos algorithm can attain machine precision, it inevitably goes many
passes through A, and it is thus slow when A does not fit in memory.

Facing large-scale data, we must trade off between precision and computational costs.
We are particularly interested in approximate algorithm that satisfies:

1. The algorithm goes constant passes through A. Then A can be stored in large volume
disks, and there are only constant swaps between disk and memory.

2. The algorithm only keeps a small-scale sketch of A in memory.

3. The time cost is O(mnk) or lower.

5.2 Prototype Randomized k-SVD Algorithm

This section describes a randomized algorithm that computes the k-SVD of A up to 1 + ε
Frobenius norm relative error. The algorithm is proposed by [14], and it is described in
Algorithm 5.2.

5.2.1 Theoretical Explanation

If C = AS ∈ Rm×s is a good sketch of A, the column space of C should roughly contain
the columns of Ak—this is the low-rank approximation property. If S ∈ Rn×s is Gaussian
projection matrix or count sketch and s = O(k/ε), then the low-rank approximation property

min
rank(Z)≤k

‖CZ−A‖2
F ≤ (1 + ε)‖A−Ak‖2

F (5.1)

26



Algorithm 5.2 Prototype Randomized k-SVD Algorithm.
1: Input: an m× n matrix A and the target rank k.
2: Draw a n× s sketching matrix S where s = O(kε );
3: C = AS;
4: QR decomposition: [QC︸︷︷︸

m×s

,RC] = qr( C︸︷︷︸
m×s

);

5: k-SVD: [ Ū︸︷︷︸
s×k

, Σ̃︸︷︷︸
k×k

, Ṽ︸︷︷︸
n×k

] = svds(QT
CA︸ ︷︷ ︸
s×n

, k);

6: Ũ = QCŪ ∈ Rm×k;
7: return ŨΣ̃ṼT ≈ Ak.

holds in expectation.

5.2.2 Algorithm Derivation

Let QC be any orthonormal bases of C. Since the column space of C is the same to the
column space of QC, the minimization problem in (5.1) can be equivalently converted to

X? = argmin
rank(X)≤k

‖ QC︸︷︷︸
m×s

X︸︷︷︸
s×n

− A︸︷︷︸
m×n

‖2
F = (QT

CA)k. (5.2)

Here the second equality is a well known fact. The matrix Ak is well approximated by
Ãk := QCX?, so we need only to find the k-SVD of Ãk:

Ãk := QC︸︷︷︸
m×s

X?︸︷︷︸
s×n

= QC (QT
CA)k︸ ︷︷ ︸

:=ŪΣ̃ṼT

= QCŪ︸ ︷︷ ︸
:=Ũ

Σ̃ṼT = Ũ︸︷︷︸
m×k

Σ̃︸︷︷︸
k×k

ṼT︸︷︷︸
k×n

.

It is easy to check that Ũ and Ṽ have orthonormal columns and Σ̃ is a diagonal matrix.
Notice that the accuracy of the randomized k-SVD depends only on the quality of the sketch
matrix C.

5.2.3 Implementation

The algorithm is described in Algorithm 5.2 and can be implemented in 5 lines of MATLAB
code. Here s = O(k

ε
) is the size of the sketch.

1 f unc t i on [ Uti lde , S t i l d e , Vt i lde ] = ksvdPrototype (A, k , s )
2 C = CountSketch (A, s ) ;
3 [Q, R] = qr (C, 0) ;
4 [ Ubar , S t i l d e , Vt i lde ] = svds (Q’ ∗ A, k ) ;
5 Ut i lde = Q ∗ Ubar ;

Empirically, using “svd(Q′ ∗ A, ′econ′)” followed by discarding the k + 1 to s components
should be faster than the “svds” function in Line 4.

The algorithm has the following properties:

27



1. The algorithm goes 2 passes through A;

2. The algorithm only keeps an m×O(k
ε
) sketch C in memory;

3. The time cost is O(nnz(A)k/ε).

5.3 Faster Randomized k-SVD

The prototype algorithm spends most of its time on solving (5.2); if (5.2) can be solved more
efficiently, the randomized k-SVD can be even faster. The readers may have noticed that
(5.2) is the least squares regression (LSR) problem discussed in Section 4.4. Yes, we can
solve (5.2) efficiently by the inexact LSR algorithm presented in the previous section.

5.3.1 Theoretical Explanation

Now we draw a m× p GaussianProjection+CountSketch matrix P and solve this problem:

X̃ = argmin
rank(X)≤k

‖PTQC︸ ︷︷ ︸
p×s

X︸︷︷︸
s×n

−PTA︸ ︷︷ ︸
p×n

‖2
F . (5.3)

To understand this trick, the readers can retrospect the extension of LSR in Section 4.4. Let

P = Pcs︸︷︷︸
m×pcs

Psrht︸ ︷︷ ︸
pcs×p

where pcs = O(k/ε+k2) and p = O(k/ε). The subspace embedding property of RSHT+CountSketch
[6, Theorem 46] implies that

(1 + ε)−1‖QCX̃−A‖2
F ≤ ‖PT (QCX̃−A)‖2

F ≤ ‖PT (QCX? −A)‖2
F ≤ (1 + ε)‖QCX? −A‖2

F ,

⇒ ‖QCX̃−A‖2
F ≤ (1 + ε)2‖QCX? −A‖2

F ≤ (1 + ε)3‖A−Ak‖2
F .

Here the second inequality follows from the optimality of X̃, and the last inequality follows
from the low-rank approximation property of the sketch C = AS. Thus, by solving (5.3) we
get k-SVD up to 1 +O(ε) Frobenius norm relative error.

5.3.2 Algorithm Derivation

The faster randomized k-SVD is described in Algorithm 5.3 and derived in the following.
The algorithm solves

X̃ = argmin
rank(X)≤k

‖PTC︸ ︷︷ ︸
p×s

X︸︷︷︸
s×n

−PTA︸ ︷︷ ︸
p×n

‖2
F (5.4)

to obtain the rank k matrix X̃ ∈ Rc×n, and approximates Ak by

Ak ≈ CX̃.

28



Algorithm 5.3 Faster Randomized k-SVD Algorithm.
1: Input: an m× n matrix A and the target rank k.
2: Set the parameters as s = Õ(kε ), pcs = s2 log6 s

ε + s
ε , and p = s

ε log s
ε ;

3: Draw a n× s count sketch matrix S and perform sketching: C = AS;
4: Draw an m× pcs count sketch matrix Pcs and an pcs × p matrix Psrht;
5: Perform Sketching: D = PT

srhtP
T
csC ∈ Rp×s and L = PT

srhtP
T
csA ∈ Rp×n;

6: QR decomposition: [QD︸︷︷︸
p×s

, RD︸︷︷︸
s×s

] = qr( D︸︷︷︸
p×s

);

7: k-SVD: [ Ū︸︷︷︸
s×k

, Σ̄︸︷︷︸
k×k

, V̄︸︷︷︸
n×k

] = svds(QT
DL︸ ︷︷ ︸
s×n

, k);

8: SVD: [ Ũ︸︷︷︸
n×k

, Σ̃︸︷︷︸
k×k

, V̂︸︷︷︸
k×k

] = svd(CR†DŪΣ̄︸ ︷︷ ︸
s×k

);

9: Ṽ = V̄︸︷︷︸
n×k

V̂︸︷︷︸
k×k

;

10: return ŨΣ̃ṼT ≈ Ak.

Define D = PTC, L = PTA, and let QDRD = D be the QR decomposition. Then (5.4)
becomes

X̃ = argmin
rank(X)≤k

‖ D︸︷︷︸
p×s

X︸︷︷︸
s×n

− L︸︷︷︸
p×n

‖2
F = R†D︸︷︷︸

s×s

(QT
DL)k︸ ︷︷ ︸
s×n

.

Based on the defined notation, we decompose Ak ≈ CX̃ by

Ak ≈ CX̃ = CR†D (QT
DL)k︸ ︷︷ ︸

:=ŪΣ̄V̄T

= CR†DŪΣ̄︸ ︷︷ ︸
:=ŨΣ̃V̂T

V̄T = ŨΣ̃ V̂T V̄T︸ ︷︷ ︸
:=ṼT

= Ũ︸︷︷︸
m×k

Σ̃︸︷︷︸
k×k

ṼT︸︷︷︸
k×n

.

5.3.3 Implementation

The faster randomized k-SVD is described in Algorithm 5.3 and implemented in 18 lines of
MATLAB code.

1 f unc t i on [ Uti lde , S t i l d e , Vt i lde ] = ksvdFaster (A, k , s , p1 , p2 )
2 n = s i z e (A, 2) ;
3 C = CountSketch (A, s ) ;
4 A = [A, C ] ;
5 A = A’ ;
6 sketch = CountSketch (A, p1 ) ;
7 c l e a r A % A (m−by−n) w i l l not be used
8 sketch = Gauss ianPro ject ion ( sketch , p2 ) ;
9 sketch = sketch ’ ;

10 L = sketch ( : , 1 : n ) ;
11 D = sketch ( : , n+1:end ) ;
12 c l e a r sketch % sketch ( p2−by−(n+c ) ) w i l l not be used
13 [QD, RD] = qr (D, 0) ;

29



14 [ Ubar , Sbar , Vbar ] = svds (QD’ ∗ L , k ) ;
15 c l e a r L % L ( p2−by−n) w i l l not be used
16 C = C ∗ ( pinv (RD) ∗ ( Ubar ∗ Sbar ) ) ;
17 [ Ut i lde , S t i l d e , Vhat ] = svd (C, ’ econ ’ ) ;
18 Vt i lde = Vbar ∗ Vhat ;

There are a few things to remark:

1. The algorithm goes only two passes through A.

2. The algorithm costs time O
(
nnz(A) + (m+ n)poly(k/ε)

)
.

3. The parameters should be set as k < s < p2 < p1� m,n.

4. Line 8 can be removed or replaced by other sketching methods.

5. “A”, “sketch”, and “L” are the most memory expensive variables in the program, but
fortunately, they are swept only one or two passes. If “A”, “sketch”, and “L” do not
fit in memory, they should be stored in disk and loaded to memory block-by-block to
perform computations.

6. Unless both m and n are large enough, this algorithm may be slower than the prototype
algorithm.

30



Chapter 6

SPSD Matrix Sketching

This chapter considers SPSD matrix K ∈ Rn×n, which can be a kernel matrix, a social
network graph, a Hessian matrix, or a Fisher information matrix. Our objective is to find
a low-rank decomposition K ≈ LLT . (Notice that LLT is always SPSD, no matter what L
is.) If K is symmetric but not SPSD, it can be approximated by K ≈ CZCT where Z is
symmetric but not necessarily SPSD.

6.1 Motivations

This section provides three motivation examples to show why we seek to sketch K by K ≈
LLT or K ≈ CZCT .

6.1.1 Forming a Kernel Matrix

In the kernel approximation problems, we are given

• an n× d matrix X, whose rows are data points x1, · · · ,xn ∈ Rd,

• a kernel function, e.g. the Gaussian RBF kernel function defined by

κ(xi,xj) = exp
(
− 1

2σ−2
‖xi − xj‖2

2

)
where σ > 0 is the kernel width parameter.

The RBF kernel matrix can be computed by the following MATLAB code:

1 f unc t i on [K] = rb f (X1 , X2 , sigma )
2 K = X1 ∗ X2 ’ ;
3 X1 row sq = sum(X1. ˆ 2 , 2) / 2 ;
4 X2 row sq = sum(X2. ˆ 2 , 2) / 2 ;
5 K = bsxfun (@minus , K, X1 row sq ) ;
6 K = bsxfun (@minus , K, X2 row sq ’ ) ;
7 K = K / ( sigma ˆ2) ;
8 K = exp (K) ;

31



If X1 and X2 are respectively n1 × d and n2 × d matrices, then the output of “rbf” is an
n1 × n2 matrix.

Kernel methods requires forming the n × n kernel matrix K whose the (i, j)-th entry is
κ(xi,xj). The RBF kernel matrix can be computed by the MATLAB function

1 K = rb f (X, X, sigma )

in O(n2d) time.
In presence of millions of data points, it is prohibitive to form such a kernel matrix.

Fortunately, a sketch of K can be obtained very efficiently. Let S ∈ Rn×s be a uniform
column selection matrix1 described in Section 3.3, then C = KS can be obtained in O(nsd)
time by the following MATLAB code.

1 f unc t i on [C] = rbfSketch (X, sigma , s )
2 n = s i z e (X, 1) ;
3 idx = s o r t ( randsample (n , s ) ) ;
4 C = rb f (X, X( idx , : ) , sigma ) ;

6.1.2 Matrix Inversion

Let K be an n×n kernel matrix, y be an n dimensional vector, and α be a positive constant.
Kernel methods such as the Gaussian process regression (or the equivalent the kernel ridge
regression) and the least squares SVM require solving

(K + αIn)w = y

to obtain w ∈ Rn. The exact solution costs O(n3) time and O(n2) memory.
If we have a rank l approximation K ≈ LLT , then w can be approximately obtained in

O(nl2) time and O(nl) memory. Here we need to apply the Sherman-Morrison-Woodbury
matrix identity

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1.

We expand (LLT + αIn)−1 by the above identity and obtain

(LLT + αIn)−1 = α−1In − α−1L(αIl + LTL︸ ︷︷ ︸
l×l

)−1LT ,

and thus
w = (K + αIn)−1y ≈ α−1y − α−1L(αIl + LTL)−1LTy.

The matrix inversion problem not only appears in the kernel methods, but also in the
second order optimization problems. Newton’s method and the so-called natural gradient

1The local landmark selection is sometimes a better choice. Do not use random projections, because they
inevitably visit every entry of K.

32



method require computing H−1g, where g is the gradient and H is the Hessian matrix or
the Fisher information matrix. Since low-rank matrices are not invertible, the naive low-
rank approximation H ≈ CZCT does not work. To make matrix inversion possible, one
can use the spectral shifting trick of [30]: fix a small constant α > 0, form the low-rank
approximation H − αIn ≈ CZCT , and compute H−1g ≈ (CZCT + αIn)−1g. Besides the
low-rank approximation approach, one can approximate H by a block diagonal matrix or
even its diagonal, because it is easy to invert a diagonal matrix or a block diagonal matrix.

6.1.3 Eigenvalue Decomposition

With the low-rank decomposition K ≈ LLT at hand, we first approximately decompose K
by

K ≈ LLT = (ULΣLVT
L)(ULΣLVT

L)T = ULΣ2
LUT

L,

and then discard the k + 1 to l components in UL and ΣL. Here L = ULΣLVT
L is the SVD

of L, which can be obtained in O(nl2) time and O(nl) memory. In this way, the rank k
(k ≤ rank(L)) eigenvalue decomposition is approximately computed.

6.2 Prototype Algorithm

From now on, we will consider how to find the low-rank approximation K ≈ LLT . As usual,
the simplest approach is to form a sketch C = KS ∈ Rn×s and solve

X? = min
X
‖K−CXCT‖2

F = C†K(C†)T or Z? = min
Z
‖K−QCZQC‖2

F = QT
CKQC,

(6.1)
where QC is the orthonormal bases of C computed by SVD or QR decomposition. It is
obvious that CX?C = QCZ?QT

C. In this way, a rank c approximation to K is obtained.
This approach is first studied by [14]. Wang et al. [30] showed that if C contains s = O(k/ε)
columns of K chosen by adaptive sampling, the error bound

E‖K−QCZ?QT
C‖2

F ≤ (1 + ε)‖K−Kk‖2
F

is guaranteed. Other sketching methods can also be applied, although currently they do not
have 1 + ε error bound. In the following we implement the prototype algorithm (with the
count sketch) in 5 lines of MATLAB code. Since the algorithm goes only two passes through
K, when K does not fit in memory, we can store K in the disk and keep one block of K in
memory at a time. In this way, O(ns) memory is enough.

1 f unc t i on [QC, Z ] = spsdPrototype (K, s )
2 n = s i z e (K, 2) ;
3 C = CountSketch (K, s ) ;
4 [QC, ˜ ] = qr (C, 0) ;
5 Z = QC’ ∗ K ∗ QC;

33



Algorithm 6.1 Faster SPSD Matrix Sketching.
1: Input: an n× n matrix K and integers s and p (s ≤ p� n).
2: Draw a column selection matrix S ∈ Rn×s;
3: Perform sketching: C = AS;
4: QR decomposition: [QC,RC] = qr(C);
5: Draw a column selection matrix P ∈ Rn×p;
6: Compute Z̃ = (PTQC)†(PTKP)(QT

CP)†;
7: return QCZ̃QT

C ≈ A.

Despite its simplicity, the algorithm has several drawbacks.

• The time cost of this algorithm is O(ns2 + nnz(K)s), which can be quadratic in n.

• The algorithm must visit every entry of K, which can be a serious drawback when
applied to kernel methods. It is because computing the kernel matrix K costs O(n2d)
time, where d is the dimension of the data points.

Therefore, we are interested in computing a low-rank approximation in linear time (w.r.t. n)
and avoiding visiting every entry of K.

6.3 Faster SPSD Matrix Sketching

The readers may have noticed that (6.1) is the problem studied in Section 4.5. We can thus
draw a column selection matrix P ∈ Rn×p and approximately solve (6.1) by

Z̃ = min
Z
‖PT (K−QCZQC)P‖2

F = (PTQC)†︸ ︷︷ ︸
s×p

(PTKP)︸ ︷︷ ︸
p×p

(QT
CP)†︸ ︷︷ ︸
p×s

. (6.2)

Then we can approximate K by QCZ̃QT
C. We describe the faster SPSD matrix sketching in

Algorithm 6.1.
There are a few things to remark.

• Since we are trying to avoid computing every entry of K, we should use uniform
sampling or local landmark selection to form C = KS.

• Let P ∈ Rn×p be a leverage score sampling matrix according to the columns of CT .
That is, it samples the i-th column with probability proportional to qi, where qi is the
squared `2 norm of the i-th row of QC (for i = 1 to n). When p = O(

√
nsε−1/2), the

following error bounds holds with high probability [31]

‖K−QCZ̃QT
C‖2

F ≤ (1 + ε) min
Z
‖K−QCZQT

C‖2
F .

• Let S be a uniform sampling matrix and P be a leverage score sampling matrix. The
algorithm visits only ns+ p2 = O(n) entries of K. The overall time and memory costs
are linear in n.

34



• Assume S is a column selection matrix. Let the sketch C = KS contains the columns
of K indexed by S ⊂ [n], and the columns selected by P are indexed by P ⊂ [n].
Empirically, enforcing S ⊂ P significantly improves the approximation quality.

• Empirically, letting p be several times larger than s, e.g. p = 4s, is sufficient for a high
quality.

The algorithm can be implemented in 12 lines of MATLAB code.

1 f unc t i on [QC, Z ] = spsdFaster (K, s )
2 p = 4 ∗ s ; % can be tuned
3 n = s i z e (K, 2) ;
4 S = s o r t ( randsample (n , s ) ) ; % uniform sampling
5 C = K( : , S ) ;
6 [QC, ˜ ] = qr (C, 0) ;
7 q = sum(QC. ˆ 2 , 2) ; % the sampling p r o b a b i l i t y
8 q = q / sum( q ) ;
9 P = randsample (n , p , true , q ) ; % l e v e r a g e s co r e sampling

10 P = unique ( [P ; S ] ) ; % e n f o r c e P to conta in S
11 PQCinv = pinv (QC(P, : ) ) ;
12 Z = PQCinv ∗ K(P, P) ∗ PQCinv ’ ;

The above implementation assumes that K is a given matrix. In the kernel approximation
problems, we are only given a n × d matrix X, whose rows are data points, and a kernel
function, e.g. the RBF kernel with width parameter σ. We should implement the faster
SPSD sketching algorithm in the following way.

1 f unc t i on [QC, Z ] = spsdFaster (X, sigma , s )
2 p = 4 ∗ s ; % can be tuned
3 n = s i z e (X, 1) ;
4 S = s o r t ( randsample (n , s ) ) ; % uniform sampling
5 C = rb f (X, X(S , : ) , sigma ) ;
6 [QC, ˜ ] = qr (C, 0) ;
7 q = sum(QC. ˆ 2 , 2) ; % the sampling p r o b a b i l i t y
8 q = q / sum( q ) ;
9 P = randsample (n , p , true , q ) ;

10 P = unique ( [P ; S ] ) ; % e n f o r c e P conta in s S
11 PQCinv = pinv (QC(P, : ) ) ;
12 Ksub = rb f (X(P, : ) , X(P, : ) , sigma ) ;
13 Z = PQCinv ∗ Ksub ∗ PQCinv ’ ;

The above implementation avoids computing the whole kernel matrix, and is thus highly
efficient when applied to kernel methods.

35



6.4 The Nyström Method

Let S be an n× s column selection matrix and C = KS ∈ Rn×s be a sketch of K. Recall the
model (6.2) proposed in the previous section. It is easy to verify that QCZ̃QT

C = CX̃CT ,
where X̃ is defined by

X̃ = min
X
‖PT (K−CXC)P‖2

F = (PTC)†︸ ︷︷ ︸
s×p

(PTKP)︸ ︷︷ ︸
p×p

(CTP)†︸ ︷︷ ︸
p×s

.

One can simply set P = S ∈ Rn×s and let W = STC = STKS. Then the solution X̃
becomes

X̃ = (STC)†(STKS)(CTS)† = W†WW† = W†.

The low-rank approximation
K ≈ CW†CT

is called the Nyström method [20; 32]. The Nyström method is perhaps the most extensively
used kernel approximation approach in the literature. See Figure 6.1 for the illustration of
the Nyström method.

                

                

                

                

                

                

                

                

Nyström 
Approximation 

    

    

    

    

    

    

    

    

    

    × × 
                

                

n×n 

s×n 

n×s 

s×s 

Figure 6.1: The illustration of the Nyström method.

There are a few things to remark:

• The Nyström is highly efficient. When applied to speedup kernel methods, the scala-
bility can be as large as n = 106.

• The Nyström method is a rough approximation to K and is well known to be of low
accuracy. If a moderately high accuracy is required, one had better use the method in
the previous section.

• The s × s matrix W is usually ill-conditioned, and thus the Moore-Penrose inverse
can be numerically instable. (It is because the bottom singular values of W blow up
during the Moore-Penrose inverse.) A very effective heuristic is to drop the bottom
singular values of W: set a parameter k < s, e.g. k = d0.8se, and approximate K by
C(Wk)

†CT .

36



• There are many choices of the sampling matrix S. See [13] for more discussions.

The Nyström method can be implemented in 11 lines of MATLAB code. The output of the
algorithm is L ∈ Rn×k, where LLT is the Nyström approximation to K.2

1 f unc t i on [ L ] = Nystrom (X, sigma , s )
2 k = c e i l ( 0 . 8 ∗ s ) ; % can be tuned
3 n = s i z e (X, 1) ;
4 S = s o r t ( randsample (n , s ) ) ; % uniform sampling
5 C = rb f (X, X(S , : ) , sigma ) ; % C = K( : , S )
6 W = C(S , : ) ;
7 [UW, SW, ˜ ] = svd (W) ;
8 SW = diag (SW) ;
9 SW = 1 . / s q r t (SW( 1 : k ) ) ;

10 UW = bsxfun ( @times , UW( : , 1 : k ) , SW’ ) ;
11 L = C ∗ UW; % K i s approximated by L ∗ L ’

Here we use the RBF kernel function implemented in Section 6.1. Line 8 sets k = d0.8ce,
which can be better tuned to enhance numerical stability. Notice that k should not be set
too small, otherwise the accuracy would be affected.

6.5 More Efficient Extensions

Several SPSD matrix approximation methods has been proposed recently, and they are more
scalable than the Nyström method in certain applications. This section briefly describes some
of these methods.

6.5.1 Memory Efficient Kernel Approximation (MEKA)

MEKA [24] exploits the block structure of kernel matrices and is more memory efficient
than the Nyström method. MEKA first partitions the data x1, · · · ,xn into b groups (e.g. by
inexact kmeans clustering), accordingly, the kernel matrix K has b× b blocks:

K =

 K[1,1] · · · K[1,b]
...

. . .
...

K[b,1] · · · K[b,b]

 =

 K[1:]
...

K[b:]

 .
Then MEKA approximately computes the top left singular vectors of K[1:], · · · ,K[b:], denote
U[1], · · · ,U[b], respectively. For each (i, j) ∈ [b]× [b], MEKA finds a very small-scale matrix
Z[i,j] by solving

Z[i,j] = argmin
Z

∥∥K[i,j] −U[i]Z[i,j]U
T
[j]

∥∥2

F
.

2Let Wk = UW,kΛW,kUT
W,k be the k-eigenvalue decomposition of W and set L = CUW,kΛ−1

W,k ∈ Rn×k.

37



This can be done efficiently using the approach in Section 4.5. Finally, the low-rank approx-
imation is

K ≈

 U[1] 0
. . .

0 U[b]


 Z[1,1] · · · Z[1,b]

...
. . .

...
Z[b,1] · · · Z[b,b]


 U[1] 0

. . .

0 U[b]


T

= UZUT .

Since Z and U[1], · · · ,U[b] are small-scale matrices, MEKA is thus very memory efficient.
There are several things to remark:

• MEKA can be used to speedup Gaussian process regression and least squares SVM.
However, MEKA can be hardly applied to speedup k-eigenvalue decomposition, be-
cause it requires the k-SVD of UZ1/2, which destroys the sparsity and significantly
increases memory cost.

• Indiscreet implementation, e.g. the implementation provided by [24], can make MEKA
numerically unstable, as was reported by [30; 28]. The readers had better to follow the
stabler implementation in [28].

6.5.2 Structured Kernel Interpolation (SKI)

SKI [33] is a memory efficient extension of the Nyström method. Let S be a column selection
matrix, C = KS, and W = STC = STKS. The Nyström method approximates K by
CW†CT . SKI further approximates each row of C by a convex combination of two rows of
W and obtain C ≈ XW. Notice that each row of X has only two nonzero entries, which
makes X extremely sparse. In this way, K is approximated by

K ≈ CW†C ≈ (XW)W†(XW)T = XWXT .

Much accuracy is lost in the second approximation, so SKI is much less accurate than the
Nyström method. For the same reason as MEKA, there is no point in applying SKI to
speedup k-eigenvalue decomposition of K.

6.6 Extension to Rectangular Matrices: CUR Matrix

Decomposition

This section considers the problem of sketching any rectangular matrix A by the CUR
matrix decomposition [16]. The CUR matrix decomposition is an extension of the previously
discussed SPSD matrix sketching methods.

6.6.1 Motivation

Suppose we are given n training data x1, · · · ,xn ∈ Rd, m test data x′1, · · · ,x′m ∈ Rd, and a
kernel function κ(·, ·). In their generalization (test) stage, kernel methods such as GPR and

38



KPCA form an m × n matrix K∗, where (K∗)ij = κ(x′i,xj), and apply K∗ to some vectors
or matrices. Notice that it takes O(mnd) time to form K∗ and O(mnp) time to multiply K∗
by an n × p matrix. If m is as large as n, the generalization stage of such kernel methods
can be very expensive. Fortunately, with the help of the CUR matrix decomposition, the
generalization stage of GPR or KPCA merely costs time linear in m+ n.

6.6.2 Prototype CUR Decomposition

Suppose we are given an arbitrary m×n rectangular matrix A, which can be the aforemen-
tioned K∗. We sample c columns of A to form C = ASC ∈ Rm×c, sample r rows of A to
form R = ASR ∈ Rr×n, and compute the intersection matrix U? ∈ Rc×r by solving

U? = argmin
U
‖ A︸︷︷︸
m×n

− C︸︷︷︸
m×c

U︸︷︷︸
c×r

R︸︷︷︸
r×n

‖2
F = C†AR†. (6.3)

The approximation A ≈ CU?R is well known as the CUR decomposition [16]. This for-
mulation bears a strong resemblance with the prototype SPSD matrix sketching method in
(6.1).

The prototype CUR decomposition is not very useful because (1) its time cost is O(mn ·
min{c, r}) and (2) it visits every entry of A.

6.6.3 Faster CUR Decomposition

Analogous to the SPSD matrix sketching, we can compute U? approximately and signifi-
cantly more efficiently. Let PC ∈ Rm×pc and PR ∈ Rn×pr be some column selection matrices.
Then we solve this problem in stead of (6.3):

Ũ = argmin
U
‖PT

CAPR︸ ︷︷ ︸
pc×pr

−PT
CC︸ ︷︷ ︸
pc×c

U︸︷︷︸
c×r

RPR︸ ︷︷ ︸
r×pr

‖2
F = (PT

CC)†(PT
CAPR)(RPR)†. (6.4)

The faster CUR decomposition is very similar to the faster SPSD matrix sketching method
in Section 6.3. The faster CUR decomposition has the following properties:

• It visits only mc+nr+ pcpr entries of A, which is linear in m+n. This is particularly
useful when applied to kernel methods, because it avoids forming the whole kernel
matrix.

• The overall time and memory costs are linear in m+ n.

• If PC is the leverage score sampling matrix corresponding to the columns of CT and
PR is the leverage score sampling matrix corresponding to the columns of R, then Ũ
is a very high quality approximation to U? [31]:

‖A−CŨR‖2
F ≤ (1 + ε) min

U
‖A−CUR‖2

F

holds with high probability.

39



Empirically speaking, setting PC and PR be uniform sampling matrices works nearly as
well as leverage score sampling matrices, and setting pc = pr = O(c + r) suffices for a high
approximation quality. If A is a full-observed matrix, the CUR matrix decomposition can
be computed by the following MATLAB code.

1 f unc t i on [C, U, R] = curFaste r (A, c , r )
2 pc = 2 ∗ ( r + c ) ; % can be tuned
3 pr = 2 ∗ ( r + c ) ; % can be tuned
4 [m, n ] = s i z e (A) ;
5 SC = s o r t ( randsample (n , c ) ) ;
6 SR = s o r t ( randsample (m, r ) ) ;
7 C = A( : , SC) ;
8 R = A(SR, : ) ;
9 PC = s o r t ( randsample (m, pc ) ) ;

10 PR = s o r t ( randsample (n , pr ) ) ;
11 PC = unique ( [PC; SR ] ) ; % e n f o r c e PC to conta in SR
12 PR = unique ( [PR; SC ] ) ; % e n f o r c e PR to conta in SC
13 U = pinv (C(PC, : ) ) ∗ A(PC, PR) ∗ pinv (R( : , PR) ) ;

Let’s consider the kernel approximation problem in Section 6.6.1. Let Xtrain ∈ Rn×d be
the training data and Xtest ∈ Rm×d be the test data. We use the RBF kernel with kernel
width parameter σ. The m × n matrix K∗ can be approximated by K̃∗ = CUR, which is
the output of the following MATLAB procedure.

1 f unc t i on [C, U, R] = curFasterKerne l ( Xtest , Xtrain , sigma , c , r )
2 pc = 2 ∗ ( r + c ) ; % can be tuned
3 pr = 2 ∗ ( r + c ) ; % can be tuned
4 m = s i z e ( Xtest , 1) ;
5 n = s i z e ( Xtrain , 1) ;
6 SC = s o r t ( randsample (n , c ) ) ;
7 SR = s o r t ( randsample (m, r ) ) ;
8 C = rb f ( Xtest , Xtrain (SC, : ) , sigma ) ;
9 R = rb f ( Xtest (SR, : ) , Xtrain , sigma ) ;

10 PC = s o r t ( randsample (m, pc ) ) ;
11 PR = s o r t ( randsample (n , pr ) ) ;
12 PC = unique ( [PC; SR ] ) ; % e n f o r c e PC to conta in SR
13 PR = unique ( [PR; SC ] ) ; % e n f o r c e PR to conta in SC
14 Kblock = rb f ( Xtest (PC, : ) , Xtrain (PR, : ) , sigma ) ;
15 U = pinv (C(PC, : ) ) ∗ Kblock ∗ pinv (R( : , PR) ) ;

The time cost of this procedure is linear in m + n, and K̃∗ = CUR can be applied to n
dimensional vector in O

(
nr +mc) time. In this way, the generalization of GPR and KPCA

can be efficient.

40



6.7 Applications

This section provides the implementations of kernel PCA, spectral clustering, Gaussian pro-
cess regression, all sped-up by randomized algorithms.

6.7.1 Kernel Principal Component Analysis (KPCA)

Suppose we are given

• n training data x1, · · · ,xn ∈ Rd,

• m test data x′1, · · · ,x′m ∈ Rd, (x′i is not the transpose xTi ),

• a kernel function κ(·, ·), e.g. the RBF kernel function,

• a target rank k (� n, d).

The goal of KPCA is to extract k features of each training datum and each test datum, which
may be used in clustering or classification. The standard KPCA consists of the following
steps:

1. Training

(a) Form the n× n kernel matrix K of the training data, whose the (i, j)-th entry is
κ(xi,xj);

(b) Compute the k-eigenvalue decomposition Kk = UkΛkU
T
k ;

(c) Form the n× k matrix UkΛ
1/2
k , whose the i-th row is the feature of xi;

2. Generalization (test)

(a) Form the m× n kernel matrix K∗ whose the (i, j)-th entry is κ(x′i,xj);

(b) Form the m× k matrix K∗UkΛ
−1/2
k , whose the i-th row is the feature of x′i.

The most time and memory expensive step in training is the k-eigenvalue decomposition of
K, which can be sped-up by the sketching techniques discussed in this section. Empirically,
the faster SPSD matrix sketching in Section 6.3 is much more accurate than the Nyström
method in Section 6.4, and their time and memory costs are all linear in n. Thus the faster
SPSD matrix sketching can be better choice. KPCA can be approximately solved by several
lines of MATLAB code.

1 f unc t i on [U, lambda , f e a t u r e t r a i n ] = kpcaTrain ( Xtrain , sigma , k )
2 s = k ∗ 10 ; % can be tuned
3 [QC, Z ] = spsdFaster ( Xtrain , sigma , s ) ; % QC has orthogona l columns
4 c l e a r Xtrain
5 [UZ, SZ , ˜ ] = svd (Z) ;
6 U = QC ∗ UZ( : , 1 : k ) ; % U conta in s the top k e i g e n v e c t o r s

41



7 lambda = diag (SZ) ;
8 lambda = lambda ( 1 : k ) ; % lambda i s the vec to r conta in ing the top k

e i g e n v a l u e s
9 f e a t u r e t r a i n = bsxfun ( @times , U, ( s q r t ( lambda ) ) ’ ) ;

10 end

1 f unc t i on [ f e a t u r e t e s t ] = kpcaTest ( Xtrain , Xtest , sigma , U, lambda )
2 Ktest = rb f ( Xtest , Xtrain , sigma ) ;
3 U = bsxfun ( @times , U, (1 . / s q r t ( lambda ) ) ’ ) ;
4 f e a t u r e t e s t = Ktest ∗ U;
5 end

In the function “kpcaTrain”, the input variable “Xtrain” has n rows, each of which corre-
sponds to a training datum. The rows of the output “featuretrain” and “featuretest” are
the features extracted by KPCA, and the features can be used to perform classification. For
example, suppose each datum xi is associated with a label yi, and let y = [y1, · · · , yn]T ∈ Rn.
We can use k-nearest-neighbor

1 [ y t e s t ] = k n n c l a s s i f y ( f e a t u r e t e s t , f e a t u r e t r a i n , y )

to predict the labels of the test data.
When the number of test data m is large, the function “kpcaTest” is costly. The users

should apply the CUR decomposition in Section 6.6.3 to speedup computation.

1 f unc t i on [ f e a t u r e t e s t ] = kpcaTestCUR ( Xtrain , Xtest , sigma , U, lambda )
2 c = max(100 , c e i l ( s i z e ( Xtrain , 1) / 20) ) ; % can be tuned
3 r = max(100 , c e i l ( s i z e ( Xtest , 1) / 20) ) ; % can be tuned
4 [C, Uti lde , R] = curFasterKerne l ( Xtest , Xtrain , sigma , c , r ) ;
5 U = bsxfun ( @times , U, (1 . / s q r t ( lambda ) ) ’ ) ;
6 f e a t u r e t e s t = C ∗ ( Ut i lde ∗ (R ∗ U) ) ;
7 end

6.7.2 Spectral Clustering

Spectral clustering is one of the most popular clustering algorithms. Suppose we are given

• n data points x1, · · · ,xn ∈ Rd,

• a kernel function κ(·, ·),

• k: the number of classes.

Spectral clustering performs the following operations:

1. Form an n× n kernel matrix K, where big kij indicates xi and xj are similar;

2. Form the degree matrix D with dii =
∑

j kij and dij = 0 for all i 6= j;

42



3. Compute the normalized graph Laplacian G = D−1/2KD−1/2 ∈ Rn×n;

4. Compute the top k eigenvectors of G, denote U ∈ Rn×k, and normalize the rows of U;

5. Apply kmeans clustering on the rows of V to obtain the class labels.

The first step costs O(n2d) time and the fourth step costs O(n2k) times, which limit the
scalability of spectral clustering. Fowlkes et al. [11] proposed to apply the Nyström method
to make spectral clustering more scalable by avoiding forming the whole kernel matrix and
speeding-up the k-eigenvalue decomposition. Empirically, the algorithm in Section 6.3 is
more accurate than the Nyström method in Section 6.4, and they both runs in linear time.
Spectral clustering with the randomized algorithm in Section 6.3 can be implemented in 16
lines of MATLAB code.

1 f unc t i on [ l a b e l s ] = S p e c t r a l C l u s t e r i n g F a s t e r (X, sigma , k )
2 s = k ∗ 10 ; % can be tuned
3 n = s i z e (X, 1) ;
4 [QC, Z ] = spsdFaster (X, sigma , s ) ; % K i s approximated by QC ∗ Z ∗ QC’
5 [UZ, SZ , ˜ ] = svd (Z) ;
6 SZ = s q r t ( diag (SZ) ) ;
7 UZ = bsxfun ( @times , UZ, SZ ’ ) ; % now Z = UZ ∗ UZ’
8 L = QC ∗ UZ; % now K i s approximated by L ∗ L ’
9 d = ones (n , 1) ;

10 d = L ∗ (L ’ ∗ d) ; % diagona l o f the degree matrix D
11 d = 1 . / s q r t (d) ;
12 L = bsxfun ( @times , L , d) ; % now G i s approximated by L∗L ’
13 [U, ˜ , ˜ ] = svd (L , ’ econ ’ ) ;
14 U = U( : , 1 : k ) ;
15 U = normr (U) ; % normal ize the rows o f U
16 l a b e l s = kmeans (U, k , ’ R e p l i c a t e s ’ , 3) ;

When the scale of data is too large for the faster SPSD matrix sketching algorithm in
Section 6.3, one can instead use the more efficient Nyström method in Section 6.4: simply
replace Lines 4 to 8 by

1 L = Nystrom (X, sigma , s ) ;

6.7.3 Gaussian Process Regression (GPR)

The Gaussian process regression (GPR) is one of the most popular machine learning methods.
GPR is the foundation of Bayesian optimization and has important applications such as
automatically tuning the hyper-parameters of deep neural networks. Suppose we are given

• n training data x1, · · · ,xn ∈ Rd,

• labels y = [y1, · · · yn]T ∈ Rn of the training data,

• m test data x′1, · · · ,x′m ∈ Rd, (x′i is not the transpose xTi ),

43



• and a kernel function κ(·, ·), e.g. the RBF kernel with kernel width parameter σ.

Training. In the training stage, GPR requires forming the n × n kernel matrix K where
kij = κ(xi,xj) and computing the model

w = (K + αIn)−1y.

Here α is a tuning parameter that indicates the noise intensity in the labels y. It takes
O(n2d) time to form the kernel matrix and O(n3) time to compute the matrix inversion. To
make the training efficient, we can first sketch the SPSD matrix K to obtain K ≈ LLT and
then apply the technique in Section 6.1.2 to obtain w. Empirically, when applied to speedup
GPR, the algorithms discussed in Section 6.3 and Section 6.4 has similar accuracy, thus we
choose to use the Nyström method which is more efficient.

The training GPR with the Nyström approximation can be implemented in the following
MATLAB code. The time cost is O(nl2 + nld) and the space cost is O(nl + nd).

1 f unc t i on [w] = gprTrain ( Xtrain , ytra in , sigma , alpha )
2 l = 100 ; % can be tuned
3 L = Nystrom ( Xtrain , sigma , l ) ; % K i s approximated by L ∗ L ’
4 l = s i z e (L , 2) ;
5 w = L ’ ∗ yt ra in ;
6 w = ( alpha ∗ eye ( l ) + L ’ ∗ L) \ w;
7 w = yt ra in − L ∗ w;
8 w = w / alpha ;
9 end

The input “sigma” is the kernel width parameter and “alpha” indicates the noise intensity
in the observation.

Generalization (test). After obtaining the trained model w ∈ Rn, GPR can predict the
unknown labels of the m test data x′1, · · · ,x′m ∈ Rd. GPR forms an m×n kernel matrix K∗
whose the (i, j)-th entry is κ(x′i,xj) and compute y∗ = K∗w ∈ Rm. The i-th entry in y∗ is
the predictive label of x′i. The generalization can be implemented in four lines of MATLAB
code.

1 f unc t i on [ y t e s t ] = gprTest ( Xtrain , Xtest , sigma , w)
2 Ktest = rb f ( Xtest , Xtrain , sigma ) ;
3 y t e s t = Ktest ∗ w;
4 end

It costs O(mnd) time to compute K∗ and O(mn) time to apply K∗ to w. If m is small,
the generalization stage can be performed straightforwardly. However, if m is as large as n,
the time cost will be quadratic in n, and the user should apply the CUR decomposition in
Section 6.6.3 to speedup computation.

44



1 f unc t i on [ y t e s t ] = gprTestCUR ( Xtrain , Xtest , sigma , w)
2 c = max(100 , c e i l ( s i z e ( Xtrain , 1) / 20) ) ; % can be tuned
3 r = max(100 , c e i l ( s i z e ( Xtest , 1) / 20) ) ; % can be tuned
4 [C, Uti lde , R] = curFasterKerne l ( Xtest , Xtrain , sigma , c , r ) ;
5 y t e s t = C ∗ ( Ut i lde ∗ (R ∗ w) ) ;
6 end

45



46



Appendix A

Several Facts of Matrix Algebra

This chapter lists some facts that has been applied in this paper.

Fact A.1. The matrices Q1 ∈ Rm×n and Qn×p (m ≥ n ≥ p) have orthonormal columns.
Then the matrix Q = Q1Q2 has orthonormal columns.

Fact A.2. Let A be any m×n and rank ρ matrix. Then AA†B = UAUT
AB = AX? = UAZ?,

where

X? = argmin
X
‖B−AX‖2

F , and Z? = argmin
Z
‖B−UAZ‖2

F .

This is the reason why AA†B and UAUT
AB are called the projection of B onto the column

space of A.

Fact A.3. [34, Lemma 44] The matrices Q ∈ Rm×s (m ≥ s) has orthonormal columns. The
solution to

argmin
rank(X)≤k

‖A−QX‖2
F

is X? = (QTA)k, where (QTA)k denotes the closest rank k approximation to QTA.

Fact A.4. Let A† be the Moore-Penrose inverse of A. Then AA†A = A and A†AA† = A†.

Fact A.5. Let A be an m×n (m ≥ n) matrix and A = QARA be the QR decomposition of
A. Then

A†︸︷︷︸
n×m

= R†A︸︷︷︸
n×n

QT
A︸︷︷︸

n×m

.

Fact A.6. Let C be a full-rank matrix with more rows than columns. Let C = QCRC be
the QR decomposition and C = UCΣCVC be the condensed SVD. Then the leverage scores
of C, QC, UC are the same.

47



48



Appendix B

Notes and Further Reading

The `p Regression Problems. Chapter 4 has applied the sketching methods to solve
the `2 norm regression problem more efficiently. The more general `p regression problems
have also been studied in the literature [5; 7; 17; 8]. Especially, the `1 is of great interest
because it demonstrate strong robustness to noise. Currently the strongest result is the `p
row sampling by Lewis weights [8].

Distributed SVD. In the distributed model, each machine holds a subset of columns of
A, and the system outputs the top singular values and singular vectors. In this model, the
communication cost should also be considered, as well as the time and memory costs. The
seminal work [10] proposed to build a coreset to capture the properties of A, which facilitates
low computation and communication costs. Later on, several algorithms with stronger error
bound and lower communication and computation costs have been proposed. Currently, the
state of the art is [2].

Random Feature for Kernel Methods. Chapter 6 has introduced the sketching
methods for kernel methods. A parallel line of work is the random feature methods [22]
which also form low-rank approximations to kernel matrices. Section 6.5.3 of [27] offers simple
and elegant proof of a random feature method. Since the sketching methods usually works
better than the random feature methods (see the examples in [35]), the users are advised
to apply the sketching methods introduced in Chapter 6. Besides the two kinds of low-rank
approximation approaches, the stochastic optimization approach [9] also demonstrates very
high scalability.

49



50



Bibliography

[1] Adi Ben-Israel and Thomas N.E. Greville. Generalized Inverses: Theory and Applica-
tions. Second Edition. Springer, 2003.

[2] Christos Boutsidis and David P Woodruff. Communication-optimal distributed
principal component analysis in the column-partition model. arXiv preprint
arXiv:1504.06729, 2015.

[3] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal column-
based matrix reconstruction. SIAM Journal on Computing, 43(2):687–717, 2014.

[4] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in
data streams. Theoretical Computer Science, 312(1):3–15, 2004.

[5] Kenneth L Clarkson. Subgradient and sampling algorithms for l1 regression. In Pro-
ceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
257–266. Society for Industrial and Applied Mathematics, 2005.

[6] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression
in input sparsity time. In Annual ACM Symposium on theory of computing (STOC).
ACM, 2013.

[7] Kenneth L Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, Xi-
angrui Meng, and David P Woodruff. The fast cauchy transform and faster robust
linear regression. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 466–477. SIAM, 2013.

[8] Michael B Cohen and Richard Peng. `p row sampling by lewis weights. arXiv preprint
arXiv:1412.0588, 2014.

[9] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina F Balcan, and
Le Song. Scalable kernel methods via doubly stochastic gradients. In Advances in
Neural Information Processing Systems (NIPS). 2014.

[10] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, pca and projective clustering. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1434–
1453. SIAM, 2013.

51



[11] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral group-
ing using the Nyström method. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):214–225, 2004.

[12] Alex Gittens. The spectral norm error of the naive Nyström extension. arXiv preprint
arXiv:1110.5305, 2011.

[13] Alex Gittens and Michael W. Mahoney. Revisiting the nyström method for improved
large-scale machine learning. In International Conference on Machine Learning (ICML),
2013.

[14] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Review, 53(2):217–288, 2011.

[15] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into
a Hilbert space. Contemporary mathematics, 26(189-206), 1984.

[16] Michael W. Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends in Machine Learning, 3(2):123–224, 2011.

[17] Xiangrui Meng and Michael W Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Proceedings of the forty-fifth
annual ACM symposium on theory of computing, pages 91–100. ACM, 2013.

[18] Xiangrui Meng, Michael A Saunders, and Michael W Mahoney. Lsrn: A parallel iter-
ative solver for strongly over-or underdetermined systems. SIAM Journal on Scientific
Computing, 36(2):C95–C118, 2014.

[19] Cameron Musco and Christopher Musco. Stronger approximate singular value decom-
position via the block Lanczos and power methods. Advances in Neural Information
Processing Systems (NIPS), 2015.

[20] Evert J. Nyström. Über die praktische auflösung von integralgleichungen mit anwen-
dungen auf randwertaufgaben. Acta Mathematica, 54(1):185–204, 1930.

[21] Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature
maps. In the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD), pages 239–247. ACM, 2013.

[22] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems (NIPS), pages 1177–1184, 2007.

[23] Yousef Saad. Numerical methods for large eigenvalue problems. preparation. Available
from: http://www-users. cs. umn. edu/saad/books. html, 2011.

52



[24] Si Si, Cho-Jui Hsieh, and Inderjit Dhillon. Memory efficient kernel approximation. In
International Conference on Machine Learning (ICML), pages 701–709, 2014.

[25] G. W. Stewart. Four algorithms for the efficient computation of truncated pivoted QR
approximations to a sparse matrix. Numerische Mathematik, 83(2):313–323, 1999.

[26] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with appli-
cations to linear probing and second moment estimation. SIAM J. Comput., 41(2):
293–331, April 2012. ISSN 0097-5397.

[27] Joel A Tropp. An introduction to matrix concentration inequalities. arXiv preprint
arXiv:1501.01571, 2015.

[28] Ruoxi Wang, Yingzhou Li, Michael W Mahoney, and Eric Darve. Structured block basis
factorization for scalable kernel matrix evaluation. arXiv preprint arXiv:1505.00398,
2015.

[29] Shusen Wang and Zhihua Zhang. Improving CUR matrix decomposition and the
Nyström approximation via adaptive sampling. Journal of Machine Learning Research,
14:2729–2769, 2013.

[30] Shusen Wang, Luo Luo, and Zhihua Zhang. Spsd matrix approximation via column
selection: Theories, algorithms, and extensions. CoRR, abs/1406.5675, 2014.

[31] Shusen Wang, Zhihua Zhang, and Tong Zhang. Towards more efficient symmetric matrix
sketching and CUR matrix decomposition. arXiv preprint arXiv:1503.08395, 2015.

[32] Christopher Williams and Matthias Seeger. Using the Nyström method to speed up
kernel machines. In Advances in Neural Information Processing Systems (NIPS), 2001.

[33] Andrew Gordon Wilson and Hannes Nickisch. Kernel interpolation for scalable struc-
tured gaussian processes (kiss-gp). arXiv preprint arXiv:1503.01057, 2015.

[34] David P Woodruff. Sketching as a tool for numerical linear algebra. arXiv preprint
arXiv:1411.4357, 2014.

[35] Tianbao Yang, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. Nyström
method vs random fourier features: A theoretical and empirical comparison. In Advances
in Neural Information Processing Systems (NIPS), 2012.

[36] Kai Zhang and James T. Kwok. Clustered Nyström method for large scale manifold
learning and dimension reduction. IEEE Transactions on Neural Networks, 21(10):
1576–1587, 2010.

53


	Abstract
	1 Introduction
	2 Elementary Matrix Algebra
	2.1 Notation
	2.2 Matrix Decompositions
	2.3 Matrix (Pseudo) Inverse and Orthogonal Projector
	2.4 Time and Memory Costs

	3 Matrix Sketching
	3.1 Theoretical Properties
	3.2 Random Projection
	3.2.1 Gaussian Projection
	3.2.2 Subsampled Randomized Hadamard Transform (SRHT)
	3.2.3 Count Sketch
	3.2.4 GaussianProjection + CountSketch

	3.3 Column Selection
	3.3.1 Uniform Sampling
	3.3.2 Leverage Score Sampling
	3.3.3 Local Landmark Selection


	4 Regression
	4.1 Standard Solutions
	4.2 Inexact Solution
	4.2.1 Implementation
	4.2.2 Theoretical Explanation

	4.3 Machine-Precision Solution
	4.3.1 Basic Idea: Preconditioning
	4.3.2 Algorithm Description

	4.4 Extension: CX-Type Regression
	4.5 Extension: CUR-Type Regression

	5 Rank k Singular Value Decomposition
	5.1 Standard Solutions
	5.2 Prototype Randomized k-SVD Algorithm
	5.2.1 Theoretical Explanation
	5.2.2 Algorithm Derivation
	5.2.3 Implementation

	5.3 Faster Randomized k-SVD
	5.3.1 Theoretical Explanation
	5.3.2 Algorithm Derivation
	5.3.3 Implementation


	6 SPSD Matrix Sketching
	6.1 Motivations
	6.1.1 Forming a Kernel Matrix
	6.1.2 Matrix Inversion
	6.1.3 Eigenvalue Decomposition

	6.2 Prototype Algorithm
	6.3 Faster SPSD Matrix Sketching
	6.4 The Nyström Method
	6.5 More Efficient Extensions
	6.5.1 Memory Efficient Kernel Approximation (MEKA)
	6.5.2 Structured Kernel Interpolation (SKI)

	6.6 Extension to Rectangular Matrices: CUR Matrix Decomposition
	6.6.1 Motivation
	6.6.2 Prototype CUR Decomposition
	6.6.3 Faster CUR Decomposition

	6.7 Applications
	6.7.1 Kernel Principal Component Analysis (KPCA)
	6.7.2 Spectral Clustering
	6.7.3 Gaussian Process Regression (GPR)


	A Several Facts of Matrix Algebra
	B Notes and Further Reading
	Bibliography

