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Abstract— Hyperspectral images (HSIs) have a wealth of appli-
cations in many areas, due to their fine spectral discrimination
ability. However, in the practical imaging process, HSIs are often
degraded by a mixture of various types of noise, for example,
Gaussian noise, impulse noise, dead pixels, dead lines, and stripe
noise. Low-rank matrix decomposition theory has been widely
used in HSI denoising, and has achieved competitive results by
modeling the impulse noise, dead pixels, dead lines, and stripe
noise as sparse components. However, the existing low-rank-based
methods for HSI denoising cannot completely remove stripe noise
when the stripe noise is no longer sparse. In this article, we extend
the HSI observation model and propose a double low-rank (DLR)
matrix decomposition method for HSI denoising and destrip-
ing. By simultaneously exploring the low-rank characteristic of
the lexicographically ordered noise-free HSI and the low-rank
structure of the stripe noise on each band of the HSI, the two
low-rank constraints are formulated into one unified framework,
to achieve separation of the noise-free HSI, stripe noise, and
other mixed noise. The proposed DLR model is then solved by
the augmented Lagrange multiplier (ALM) algorithm efficiently.
Both simulation and real HSI data experiments were carried out
to verify the superiority of the proposed DLR method.

Index Terms— Denoising, destriping, hyperspectral imagery,
low-rank constraint.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are captured by an
imaging spectrometer with hundreds of continuous, nar-

row spectral bands and exhibit a 3-D data structure [1]–[4].
Compared with the traditional multispectral remote sensing
images, the additional spectral information in HSIs benefits a
large amount of remote-sensing-related applications where fine
spectral discrimination is required, for example, environmental
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monitoring [5], precision agriculture [6], military surveillance
[7], and face recognition [8]. However, the HSIs collected in
reality are inevitably contaminated by a mixture of various
types of noise, for example, Gaussian noise, impulse noise,
dead pixels, dead lines, and stripe noise [9], [10]. The presence
of a mixture of noise can seriously degrade the HSI quality,
and it limits the subsequent processing accuracy, for example,
unmixing [11], [12], anomaly detection [13], [14], classifica-
tion [15], [16], and spectral curve fitting [17]. Therefore, as a
preprocessing step for remote sensing image applications, the
denoising of HSIs is a necessary and challenging task.

Over the past decade, research into HSI denoising has
achieved significant advances. Since HSIs have a unique 3-D
structure, including a 2-D spatial domain and a 1-D spectral
domain, denoising research can be carried out from differ-
ent perspectives. First, the most simple and straightforward
method is to process the 3-D HSI data cube band by band with
the 2-D gray-level image denoising algorithms, but this usually
results in spectral distortion due to the neglect of the high spec-
tral correlation among adjacent bands [18]–[20]. Second, using
image transformation and the corresponding inverse transfor-
mation, the transformation-based methods denoise the HSI
data in a transformed domain, which can maintain the image
edges and details well [21]–[23]. However, such approaches
depend on the selection of the image transformation methods
and the distribution of the information present in different
components. In recent years, more advanced HSI denoising
approaches have been presented by taking spectral information
and spatial information into consideration simultaneously. For
example, considering the nonlocal spatial information, Qian
and Ye [24] proposed an approach for HSI denoising based
on nonlocal spectral–spatial structured sparse representation,
and Wei et al. [25] used local and nonlocal spatial similarity
simultaneously to process clusters for HSI denoising. The
total variation (TV) constraint is another effective way to
explore the spatial information, and it has been consequently
integrated with spectral information to conduct the denoising
of HSIs, for example, the spatial–spectral TV model [26], the
spatial–spectral adaptive TV model [27], and the anisotropic
spatial–spectral TV model [28]. In addition, treating the HSI
as a 3-D structure is also a direct and comprehensive way
of using the spatial and spectral information, among which
BM4D is a classical method [29]. Methods based on tensor
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decomposition have also achieved good restoration results,
including the parallel factor analysis (PARAFAC) model [30],
Tucker decomposition [31], and rank-1 decomposition [32].
However, most of the methods mentioned above are built upon
prior knowledge of the HSI and can only remove one or two
types of noise, and not mixed noise, due to the limitations of
the used prior constraints.

Due to the powerful ability to learn data features and high
processing efficiency of deep neural network, some researchers
applied deep learning techniques [33], [34] to HSI denoising.
For example, Xie and Li [35] extended the trainable non-
linear reaction diffusion (TNRD) approach to HSI denoising.
However, it still denoises each band separately, and thus does
not make full use of the strong spectral correlation attributes
found in HSIs. Yuan et al. [36] proposed an HSI denois-
ing method based on residual convolutional neural network
(HSID-CNN), which takes into account both the spatial and
spectral information, and does not require preadjustment of
parameters for different HSIs. However, it requires training
models for different levels of noise and has poor versatility.
Methods such as HSI-DeNet [37] and HSI-SDeCNN [38] have
also achieved good denoising results. However, the current
deep-learning-based methods are relatively simple and are not
applicable for more complex real noise situations.

In recent years, low-rank matrix decomposition has played
a significant role in HSI mixed noise removal, and methods for
HSI denoising based on low-rank matrix decomposition have
achieved excellent performances [39]–[43]. For a clean HSI,
there is a high correlation between the adjacent spectral bands,
which exhibit a latent low-rank structure. That is to say, the
2-D matrix lexicographically rearranged from the 3-D HSI is
inherently low-rank. By the use of the noise-free HSI low-rank
structure, Zhang et al. [44] applied the robust principal com-
ponent analysis (RPCA) model to HSI denoising and proposed
a method based on low-rank matrix recovery (LRMR) for HSI
restoration. In this approach, the observed HSI is modeled as
a summation of the noise-free HSI, Gaussian noise, and sparse
component, where the sparse component includes impulse
noise, dead pixels, dead lines, and stripe noise. The clean
signal is then separated from the mixed noise by LRMR. The
LRMR algorithm shows an excellent performance in removing
HSI mixed noise, but there are still some deficiencies. One of
the shortcomings is that the LRMR method exploits the low-
rank characteristic from the angle of the spectrum, with the
spatial information not well-utilized, and sorting the 3-D data
lexicographically into 2-D data results in structural detail infor-
mation loss, and a poor performance under the condition of
severe Gaussian noise and complex mixed noise. To solve this
problem, it is necessary to integrate spatial constraints with the
low-rank matrix decomposition simultaneously. For instance,
He et al. [45] combined low-rank regularization with a spa-

tial TV constraint, Xue et al. [46] integrated spatial and
spectral low-rank regularizations into a unified denoising
framework, and Fan et al. [47] modeled the clean HSI as
a 3-D low-rank tensor to handle spatial–spectral information
simultaneously. What is more, Zhuang and Bioucas-Dias [48]
established a fast-denoising model based on low-rank regu-
larization and sparse representation, so as to overcome the

computational burden of large matrix singular value decom-
position (SVD) and patch-wise iterative computation. In addi-
tion, Chen et al. [49] used nonconvex approximation instead
of convex approximation when solving the low-rank matrix
decomposition problem, and Rasti et al. [50] proposed an auto-
matic HSI noise removal approach on the basis of sparse and
low-rank modeling. All these methods have further improved
the denoising performance and applicability.

Although the current HSI noise removal methods based
on low-rank matrix decomposition have made significant
progress, there are still some problems in stripe noise removal.
Unlike impulse noise and dead pixels/lines caused by the
malfunctioning of a sensor, stripe noise is a kind of arti-
fact caused by calibration errors and sensitivity variations
during line-by-line detector scanning [51]. Removing stripe
noise presents many challenges due to its unique process of
formation. First, according to low-rank matrix decomposition
theory, if the stripes are periodically distributed or occur in the
same lines/columns in several adjacent bands, it is difficult
to separate the stripes and image signals as the stripes will
also be taken as the low-rank component [52]. Second, the
basis of these methods is that the impulse noise, dead pixels,
dead lines, and stripes are deemed to be sparse compared
with the entire image, and the sum of these noise items
can be modeled as the sparse component under the low-rank
matrix decomposition framework. However, in many cases,
due to the abnormal response of the sensor detectors, the
stripes span most of the image and are no longer sparse. This
phenomenon leads to the failure of the low-rank-based HSI
noise removal methods, and the stripes are not completely
removed. Therefore, how do we conduct destriping for HSIs
when the stripes are no longer sparse? Actually, the stripe
noise itself has unique structures, such as smoothness along
the stripe direction, discontinuity across the stripe direction,
and its appearance may be regular rather than strictly random.
As a result, remote sensing image destriping has been widely
investigated as an individual research field [28], [52]–[54]. It is
thus necessary to consider the unique properties of stripe noise
separately in the denoising process for HSIs.

In this article, in view of this, we propose a unified HSI
denoising and destriping framework built on double low-rank
(DLR) matrix decomposition, which can remove various types
of noise at the same time. The main contributions of this article
can be summarized as follows.

1) The HSI observation model is first extended by mod-
eling the observed HSI as the sum of the noise-free
image, the stripes, the sparse noise, and the Gaussian
noise, where the sparse noise includes impulse noise,
dead pixels, dead lines, and so on. Unlike the existing
observation model [44], the stripe noise is treated sepa-
rately, to explore the unique characteristics of HSI stripe
noise.

2) By exploiting the low-rank structure of the lexicograph-
ically ordered noise-free HSI, the low-rank property
of stripe noise on each band of the HSI, and the
sparsity of the other noise types, a unified HSI denoising
and destriping model framework is established based
on DLR decomposition, which is expected to achieve
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a better separation of the clean HSI signal from the
complex HSI mixed noise.

3) The augmented Lagrange multiplier (ALM) approach is
applied to solve the proposed DLR method efficiently.
Simulation and real-data experiments were designed to
show the validity of the proposed DLR method for HSI
denoising and destriping.

The rest of this article is arranged as follows. In Section II,
the DLR HSI denoising and destriping model and its corre-
sponding optimization procedure are presented in detail. The
simulation and real-data experiment results are presented and
analyzed in Section III. Section IV concludes this article.

II. DLR METHOD FOR HSI DENOISING AND DESTRIPING

A. Extended HSI Observation Model

General speaking, the observed HSIs are corrupted by a
mixture of various noise types during the HSI imaging pro-
cedure, including Gaussian noise, impulse noise, dead pixels,
dead lines, stripe noise, and so on. In [44], impulse noise, dead
pixels, dead lines, and stripes were modeled as sparse noise
by the assumption that these noise items only occupy a small
portion of the entire image, and the HSI observation model
was built as follows:

Y = L + S + N (1)

where Y denotes the observed HSI data; L stands for the clean
HSI data we hope to obtain; S is the sparse noise; and N
represents the Gaussian noise. The components Y, L, S, and
N are all Casorati matrices (a matrix which is rearranged by
lexicographically ordering all the HSI data columns) of the
same size of I J × K , where I denotes the width of the HSI,
J is the height of the HSI, and K stands for the number of
HSI spectral bands.

To date, most HSI denoising methods are based on the
HSI observation model as shown in (1), where the stripe
noise is modeled as sparse noise. However, the generation
and distribution of stripe noise are actually different from
other types of sparse noise, including impulse noise and
dead pixels/lines [51]. In practical applications, due to the
influence of the different remote sensing imaging sensors,
HSIs are often corrupted by various stripes with different
features [54], such as horizontal/vertical stripes with random
widths, periodic/nonperiodic stripes, and very wide stripes,
as in the hyperspectral digital imagery collection experiment
(HYDICE) urban data set and Gaofen-5 (GF-5) data sets
shown in Fig. 1. The various types of stripes in GF-5
HSIs create new challenges to the research on mixed noise
removal. First, the periodic stripes and the stripes existing in
the same lines/columns of some adjacent bands of the HSI
will be taken as the low-rank component in the low-rank
matrix decomposition process. Therefore, it is very difficult
to separate such stripes from the low-rank clean HSI. Second,
in some cases, due to the response of the sensor detectors,
the stripes are very wide or globally distributed over the
entire image and are thus no longer sparse compared with
the entire image. These two points mean that the stripes no

Fig. 1. Real HSI data sets heavily contaminated by various types of stripe
noise.

Fig. 2. Extended HSI observation model.

longer satisfy the conditions of the low-rank matrix decom-
position, and thus the current HSI denoising methods fail
to remove the stripes of HSIs completely. There is there-
fore an urgent need to extend the HSI observation model
further (1).

In this article, with consideration of the unique structures
of stripe noise, such as smoothness along the stripe direction
and discontinuity across the stripe direction, the stripe noise
is separately considered and modeled for the HSI case. Con-
sequently, the extended HSI observation model can be written
as

Y = L + S + B + N. (2)

Similarly, the matrices Y, L, S, and N, respectively, represent
the observed HSI data, the noise-free HSI data, the sparse
noise, and the Gaussian noise. Furthermore, B indicates the
Casorati matrix of the stripe noise with the same size as Y,
L, S, and N. The flowchart of the extended HSI observation
model is provided in Fig. 2. The final aim of our work
is to restore the clean HSI L from the noisy observation
HSI Y.

B. DLR Model for HSI Denoising and Destriping

Clearly, recovering the noise-free image L from the
degraded observation image Y via (2) is an ill-posed problem.
Here, maximum a posteriori (MAP) theory is used to estimate
the noiseless image L. The MAP formulation can be computed
by

L, S, B = arg maxL,S,B{p(L, S, B|Y)}. (3)

From Bayes’ rule, we have

L, S, B = arg maxL,S,B

�
p(Y|L, S, B)p(L, S, B)

p(Y)

�
. (4)

Since p(Y) is a constant, and L, S, and B are also
independent of each other, (4) can be simplified as

L, S, B = arg maxL,S,B{p(Y|L, S, B)p(L)p(S)p(B)} (5)

With the Gaussian distribution of the Gaussian noise N, the
MAP formulation (5) can be further rewritten as the following
model:
L, S, B = arg minL,S,B

�||Y − L − S − B||2F + C1 Q1(L)

+C2 Q2(S) + C3 Q3(B)
�

(6)
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Fig. 3. Spectral low-rank prior of the clean HSI.

where C1, C2, and C3 are the parameters, and
� Y − L − S − B �2

F represents the data fidelity term,
with � · �2

F denoting the Frobenious norm. The central
task now is to determine the formulations of the three
regularization terms Q1(L), Q2(S), and Q3(B), respectively.

The first regularization term, Q1(L), is modeled as the a
priori information of the clean HSI L. As is well-known, from
the angle of the linear spectral mixture model, the clean HSI
exhibits an inherent low-rank property [44]. Specifically, the
linear mixing model assumes that each spectral signature (each
line of the Casorati matrix L) can be expressed as a linear
combination of all the pure spectral endmembers, indicating
high correlation between the different spectral signatures [11].
For the clean HSI, the linear spectral mixture model can be
represented as the following equation:

L = MA (7)

where M ∈ R
I J×r1 represents the endmember matrix, A ∈

R
r1×K stands for the abundance matrix, and r1 denotes the

number of pure spectral endmembers of the HSI.
Since the number of pure spectral endmembers r1 is usually

much less than the number of spectral bands and the spatial
size of the HSI, this illustrates the HSI L low-rank structure

rank(L) ≤ r1 (8)

where rank(·) is the number of nonzero singular values of a
matrix. Therefore, by the use of the low-rank structure of the
HSI L, as shown in Fig. 3, the regularization term Q1(L) can
be provided as the following holds:

Q1(L) = rank(L). (9)

The second regularization term, Q2(S), models the sparsity
prior of the sparse noise. The sparse noise includes impulse
noise, dead pixels/lines, and so on; this noise however, can be
regarded as relatively small with respect to the entire image.
Therefore, the third term can be expressed as follows:

Q2(S) = � S �0 (10)

where � · �0 represents the �0-norm, which defines the number
of nonzero elements in the matrix.

The third regularization term, Q3(B), is related to the prior
knowledge of the stripe noise. Chang et al. [52] found, through
quantitative analysis, that the stripes in gray-level remote
sensing images conform to a strict low-rank constraint. That
is to say, in HSIs, the stripe noise matrix of each band can be
well-expressed by the low-rank regularization

rank(Bn) ≤ r2, n = 1, 2, . . . , K (11)

Fig. 4. Low-rank prior of the stripe noise for each band.

where Bn ∈ R
I×J represents the stripe noise matrix on the nth

band of the HSI, and r2 denotes the upper bound rank of Bn .
Similarly, considering the low-rank constraints of stripe

noise for each band, as presented in Fig. 4, the fourth reg-
ularization term Q3(B) can be denoted by

Q3(B) =
K�

n=1

rank(Bn). (12)

By combining (9), (10), and (12), the restoration model (6)
can be rewritten as

L, S, B = arg minL,S,B
�� Y − L − S − B �2

F + C1rank(L)

+C2� S �0 + C3

K�
n=1

rank(Bn)

�
. (13)

In the proposed DLR model, two low-rank regularization
terms are used simultaneously on the clean HSI and the
stripe noise. The only difference is that the Casorati matrix
for the clean HSI is low-rank, and the stripe noise matrix
on each band is low-rank. For the clean HSI, even if the
adjacent pixels in the local space of the image are similar, the
information in the row or column is not sufficiently redundant
due to the complexity of the image content, so it is not low-
rank. In addition, stripe noise in each HSI band is repeatedly
distributed on rows or columns due to how this noise is
generated, with high information redundancy so it has a low-
rank structure. The distribution pattern of stripe noise on
most bands is usually different, due to the independence of
the charge-coupled device elements. Therefore, if the stripe
noise is lexicographically sorted and formed into a Casorati
matrix, the original ordered distribution is reconfigured into
an unordered distribution, no longer following the low-rank
property. That is, the Casorati matrix of the noiseless HSI is
low-rank, the stripe noise matrix on each band is low-rank,
and the objects of the two low-rank constraints in the DLR
model are different. Therefore, the two low-rank constraints in
model (13) can separately induce the separation of noise-free
signals and stripe noise without interfering with each other,
which will be further demonstrated by our experiments.

Clearly, the optimization problem for the �0-norm and rank
of the matrix is NP-hard, so it is generally relaxed to a �1-norm
minimization problem and nuclear norm [55], respectively.
Therefore, the proposed DLR denoising and destriping model
can be derived as the equivalent formulation of (14):

minL,B,S� L �∗ + λ1� S �1+λ2

K�
n=1

� Bn �∗

s.t. � Y − L − S − B �2
F ≤ ε, rank(L) ≤ r1, rank(Bn) ≤ r2

(14)
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where λ1 = C2/C1 and λ2 = C3/C1 are the regularization
parameters, ε represents the Gaussian noise variance, � · �∗
denotes the nuclear norm which is defined as the sum of the
singular values of a matrix, and � · �1 is the �1-norm which is
the sum of the absolute values of all the elements in the matrix.
Thus, in model (14), the existence of the upper bound ranks r1

and r2 imposes stricter rank constraints on the matrices L and
Bn , overcoming the problem of the nuclear norm only being an
approximation of the real rank regularization, thereby further
removing the noise [45]. The ALM method is used to solve
the proposed DLR denoising and destriping model efficiently.
Full details are given in Section II-C.

C. Optimization Procedure

The proposed DLR model (14) can be efficiently solved
by the ALM optimization procedure, which minimizes the
following augmented Lagrangian function:

min �(L, S, B,�)=minL,S,B� L �∗+λ1� S �1+λ2

K�
n=1

� Bn�∗

+ < �, Y−L−S−B > +μ

2
� Y − L − S − B �2

F

s.t. rank(L) ≤ r1, rank(Bn) ≤ r2 (15)

where μ stands for the penalty parameter, � denotes the
Lagrange multiplier, and < ·, · > represents the inner product
on two matrices.

A typical approach used to tackle this problem is to optimize
the function (15) on one variable iteratively, while keeping the
other variables fixed. Individually, in the k + 1th iteration, the
variables are updated as follows:

Lk+1 = arg minrank(L)≤r1
�
�
L, Sk, Bk,�k

	
(16a)

Sk+1 = arg minS�
�
Lk+1, S, Bk ,�k

	
(16b)

Bk+1 = arg minrank(Bn)≤r2
�
�
Lk+1, Sk+1, B,�k

	
(16c)

�k+1 = �k + μ
�
Y − Lk+1 − Sk+1 − Bk+1

	
. (16d)

The optimization function (15) can then be divided into
three primary subproblems, as presented in (16a)–(16c). For
subproblem (16a), it can be deduced that

Lk+1 = arg minrank(L)≤r1
�
�
L, Sk , Bk,�k

	
= arg minrank(L)≤r1

� L �∗+ < �k, Y − L − Sk − Bk >

+μ

2
� Y − L − S − B �2

F

= arg minrank(L)≤r1
� L �∗ + μ

2
� L

−�
Y − Sk − Bk + �k/μ

	 �2
F . (17)

The update process of L can be expressed by Lemma 1 as
follows.

Lemma 1 [56]: For a matrix M ∈ R
m×n of rank r, the SVD

of it is defined as follows:
M = U�r V∗ (18)

where �r = diag(σ1, σ2, . . . , σi , . . . , σr ).
The singular value shrinkage operator of matrix M is

Dγ (M) = arg minrank(E)≤rδ� E �∗ + 1

2
� E − M �2

F (19)

where Dγ (M) = UDγ (�r )V∗, Dγ (�r ) =
diag{max((σi − γ ), 0)}. The optimization result of (17)
can be directly obtained using Lemma 1:

Lk+1 = D1/μ

�
Y − Sk − Bk + �k/μ

	
. (20)

As to the S-related subproblem (16b), we can obtain the
following formulation:

Sk+1 = arg minS�
�
Lk+1, S, Bk ,�k

	
= arg minSλ1� S �1+ < �k, Y − Lk+1 − S − Bk >

+μ

2
� Y − Lk+1 − S − Bk �2

F

= arg minSλ1� S �1

+μ

2
� S − �

Y − Lk+1 − Bk + �k/μ
	 �2

F . (21)

This can be achieved by considering the following soft-
thresholding shrinkage operator [57] to solve

�δ(x) =

⎧⎪⎨
⎪⎩

x − δ, if x >δ

x + δ, if x < − δ

0, otherwise.

(22)

The optimization result of (21) can be represented as shown
below:

Sk+1 = �(λ1/μ)

�
Y − Lk+1 − Bk + �k/μ

	
. (23)

For the B-related subproblem (16c), we can obtain the
following expression:

Bk+1 = arg minrank(Bn)≤r2
�
�
Lk+1, Sk+1, B,�k

	
= arg minrank(Bn)≤r2

λ2

K�
n=1

� Bn �∗+ < �k, Y − Lk+1

−Sk+1 − B >

+μ

2
� Y − Lk+1 − Sk+1 − B �2

F

= arg minrank(Bn)≤r2
λ2

K�
n=1

� Bn �∗

+μ

2
� B − �

Y − Lk+1 − Sk+1 + �k/μ
	 �2

F . (24)

To solve the problem (24), we can optimize the stripe noise
matrix on each band separately. We can then rewrite (24) as
follows:

Bk+1 = arg minrank(Bn)≤r2

K�
n=1

(λ2� Bn �∗

+μ

2
� Bn − �

Yn − Lk+1
n − Sk+1

n + �k
n/μ

	 �2
F

�
(25)

where Yn , Ln , Sn , and �n represent the matrices of the nth
band. Equally, the optimization equation can be solved by
Lemma 1 [the same as that of (20)]:

Bk+1
n = arg minrank(Bn)≤r2

λ2� Bn �∗
+μ

2
� Bn − �

Yn − Lk+1
n − Sk+1

n + �k
n/μ

	 �2
F

= Dλ2/μ

�
Yn − Lk+1

n − Sk+1
n + �k

n/μ
	
. (26)

By summarizing the above presentation, we arrive at the
ALM approach to solve the proposed DLR model, as shown
in Algorithm 1.
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The inputs of the DLR algorithm are the observed HSI Y,
the upper bound ranks r1 and r2, the maximum number of
iterations kmax, the stopping criterion ε, and the regularization
parameters λ1 and λ2. The output is the denoised image L.
As in [45], we initialize L = S = B = 0, and � = 0. For
variable μ shown in function (16d), it is initialized as 10−2 and
updated as μ := min(ρμ,μmax) in every iteration, in which
ρ = 1.5. This strategy for determining the penalty parameter
μ can support the convergence of the algorithm and has been
widely used in the methods based on ALM [57]. In addition,
based on experience, we set ε = 10−6 and kmax = 50 in all
the experiments.

Algorithm 1 DLR Algorithm
1: Input: the observed HSI Y, the upper bound ranks

r1 and r2, the maximum number of iterations kmax,
the stopping criterion ε, and the regularization
parameters λ1 and λ2

2: Initialize: L = S = B = 0, � = 0, ρ = 1.5,
k = 0, μ = 10−2, and μmax = 106

3: While: � Y − Lk+1 − Sk+1 − Bk+1 �∞ > ε and k ≤ kmax

4: Update Lk+1, Sk+1, Bk+1, and �k+1 via (16a)–(16d)
5: Update the penalty parameter μ := min(ρμ,μmax)
6: Update the iteration number k = k + 1
7: End While
8: Output: The restored HSI L

D. Parameter Settings

In Algorithm 1, the parameters we need to determine are
the desired ranks r1 and r2 and the regularization parameters
λ1 and λ2.

The desired rank r1 denotes the subspace dimension of
the HSI [58]. In our model, clean HSIs are degraded by
various types of noise, especially stripe noise, which is the
case with real HSIs. This means that it is difficult to obtain
the dimension of the subspace directly. Here, we resort to
the HSI subspace identification algorithm, HySime [59], for a
preliminary estimate of the desired rank. Moreover, the higher
the noise level, the more difficult it is to separate the clean
signals from the noise. That is to say, the optimal value of
the desired rank r1 is smaller [60]. The above two points
support our estimation of the rank r1. For the desired rank
r2, it represents the low-rank property of the stripe component
of each band [52], and we set r2 to 1 in all the experiments.

The regularization parameters λ1 and λ2 are used to control
the trade-offs between the clean HSI and the sparse noise,
and the clean HSI and the stripe noise, respectively. In all
the experiments, we set λ2 = 1.0. In addition, we fixed the
parameter λ1 to 0.1 in the simulation experiments and to 0.05
in the real data experiments. The analysis of parameters r1,
r2, λ1, and λ2 is provided in the experimental discussion.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The effectiveness of the HSI mixed noise removal method
based on DLR was verified by both the simulation and real
HSI data experiments.

Fig. 5. Simulated data set: Pavia city center data set (R: 80, G: 34, and
B: 9).

A. Experimental Setup

1) Simulated Data Experiments: The Pavia city
center data set was adopted in the simulation
experiments. The Pavia city center data set (available:
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes) was acquired by the Reflective Optics
System Imaging Spectrometer (ROSIS-03). Since the first
few bands in this data set are seriously contaminated by
noise, they cannot be used as references for noise removal
experiments. Therefore, the first few bands of this data set
were removed, and we selected a subimage size of 200 ×
200 × 80, which is shown in Fig. 5. Before the denoising,
the gray values of the reference HSI were normalized to
[0, 1] by band-by-band normalization.

To simulate a noisy image, simulated Gaussian noise,
impulse noise, dead lines/pixels, and stripe noise were added
to the reference HSI data set, as in the following six cases.

Case 1: Dead lines/pixels were added in band 60 to band
63. In each selected band, the number of the dead lines
ranged from 3 to 5, the width of each dead line ranged
from 1 to 3, and the number of the dead pixels ranged
from 7 to 10. Furthermore, zero-mean Gaussian noise with
the same standard deviation and the impulse noise with the
same percentage were added to all bands. To demonstrate the
robustness of the DLR solver under different intensities of
Gaussian noise and impulse noise, the following four noise
levels were set in case 1: the standard deviations of the
Gaussian noise were D = 0.001, 0.01, 0.05, and 0.1 (the
signal-to-noise ratio values were close to 50, 30, 15, and 5 dB),
and the percentages of the impulse noise were P = 0.05, 0.1,
0.15, and 0.2, correspondingly. In addition, 40% of the bands
were randomly selected to have vertical stripes added. The
number of stripes was randomly selected to be between 40%
and 50% of the width of the image.

Case 2: In this case, the dead lines/pixels were simulated the
same as that in case 1. Besides, to more accurately simulate a
real noisy HSI, zero-mean Gaussian noise and impulse noise
of different intensities for each band were added to all bands
[61]. Specifically, the standard deviation of the Gaussian noise
was randomly selected between [0, 0.2], and the percentage
of the impulse noise was randomly selected between [0, 0.2].
In addition, 20% of the bands were randomly selected to have
horizontal stripes added. The number of stripes was randomly
selected to be between 20% and 30% of the width of the
image.

Case 3: In this case, the dead lines/pixels, Gaussian noise,
and impulse noise were simulated the same way as in case 2.
In addition, 40% of the bands were randomly selected to have
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Fig. 6. Real HSI data sets. (a) HYDICE Urban data set (R: 190, G: 107,
and B: 1). (b) GF-5 Dunhuang City data set (R: 194, G: 246, and B: 330).
(c) GF-5 Yellow River Delta data set (R: 238, G: 305, and B: 1).

vertical stripes added. The number of stripes was randomly
selected to be between 40% and 50% of the width of the
image.

Case 4: In this case, the dead lines/pixels, Gaussian noise,
and impulse noise were simulated the same way as in case 2.
In addition, 60% of the bands were randomly selected to have
vertical stripes added. The number of stripes was randomly
selected to be between 60% and 70% of the width of the
image.

Case 5: In this case, the dead lines/pixels, Gaussian noise,
and impulse noise were simulated the same way as in case 2.
In addition, 40% of the bands were randomly selected to have
vertical periodic stripes added [28].

Case 6: In this case, the dead lines/pixels, Gaussian noise,
and impulse noise were simulated the same way as in case 2.
In addition, wide vertical stripes were added at the same
position in 20 continuous bands.

2) Real HSI Data Experiments: Three real HSI
data, the HYDICE Urban data set (available:
http://www.tec.army.mil/hypercube) and the two GF-5
data sets: Dunhuang City and Yellow River Delta (available:
http://hipag.whu.edu.cn/Resource%20download.html), were
used in the real HSI data experiments. The HYDICE Urban
image, as presented in Fig. 6(a), which is 307 × 307 ×
210 in size, is seriously corrupted by mixed noise in most
bands, with especially dense stripe noise. The selected GF-5
Dunhuang City image, which is presented in Fig. 6(b),
is 500 × 500 pixels in size and has 330 bands. The GF-5
Yellow River Delta subimage has a size of 500 × 500 × 305,
with some abnormal bands removed, as shown in Fig. 6(c).
The two GF-5 images are both heavily contaminated by
various types of stripes, including very wide stripe noise,
which presents at the same position on the continuous bands,
and dense stripe noise of various widths. In addition, there
is a lot of mixed noise in some of the bands. Before the
denoising, the gray values of real HSIs were normalized to
[0, 1] by band-by-band normalization.

3) Compared Algorithms: To validate the proposed DLR
method, we selected eight classical and state-of-the-art
HSI denoising methods for comparison. These methods
were spectral–spatial adaptive hyperspectral total variation
(SSAHTV) [27], BM4D [29], LRMR [44], TV-regularized
low-rank matrix factorization (LRTV) [45], local LRMR and
global spatial–spectral total variation (LLRSSTV) [60], low-
rank tensor decomposition with group sparse regularization
(LRTDGS) [39], three-directional log-based tensor nuclear

norm (3-DLogTNN) [62], and double-factor-regularized low-
rank tensor factorization (LRTFDFR) [63].

The two classical methods, SSAHTV and BM4D, were
designed to remove Gaussian noise and slight sparse noise,
whereas the other methods are suitable for removing various
types of mixed noise. Except for BM4D, which is a parameter-
free method, the experimental parameters of the competing
methods were manually adjusted to the optimum according
to the suggestions in the original articles. The setting details
are as follows. For the SSAHTV method, we adopted the
local information adaptive TV denoising mode, and to balance
the data fidelity and TV constraint, we manually adjusted
the regularization parameter to the optimal value of 0.6 in
our experiments. For all the methods that contain low-rank
constraints, the desired rank was estimated by referring to
the subspace estimation technique HySime, including the rank
of each submatrix of LRMR, the rank constraint of LRTV,
the upper bound rank of LLRSSTV, the third-mode rank r3

of LRTDGS, the rank of LRTFDFR, and the desired rank
r1 of the proposed DLR. In addition, in LRMR, we set the
spatial size of each subcube to 20, and the step size of each
subcub to 4. In LRTV, the regularization parameters were
fixed as λ = 10/(I × J)1/2 and τ = 0.005. For LLRSSTV,
we fixed the block size as 20, the step size as 10, and the
regularization parameters as λ = 0.2 and τ = 0.005. For
LRTDGS, the Tucker rank (r1, r2, r3), r1 and r2, were set as
80% of the spatial size, and the parameters λ1 and c were set
to 0.1 and 500 according to degree of noise. In 3-DLogTNN,
the parameters θ = 0.001, ϕ = 0.00005, � = 0.011, and
ω = 10000 and the constant ε were set to 80 for the simulated
data and to 60 for the real data. For LRTFDFR, in the
simulation experiment, we manually adjusted the parameters
to the optimal, where regularization parameters τ , λ, and μ and
the penalty parameter β were set to 0.01, 0.01, 0.04, and 15
000, respectively. In the real experiment, τ , λ, μ, and β were
set to 0.2, 5, 0.04, and 15 000 as suggested in the original
article. For the proposed DLR model, we fixed λ2 = 1.0
and r2 = 1 in all simulated and real data experiments; in
addition, we fixed λ1 = 0.1 in the simulation experiments,
and λ1 = 0.05 in the real data experiments, analyzed in the
experimental discussion.

4) Evaluation Indices: To assess the results of the
simulation experiments quantitatively, peak SNR (PSNR),
structure similarity (SSIM) [64], and mean spectral angle
distance (MSAD) were used. For the HSIs, the PSNR and
SSIM values between every clean band and restored band
were calculated, and then the mean PSNR (MPSNR) and mean
SSIM (MSSIM) values were computed.

B. Simulated Data Experiments

The quantitative assessment results for the different methods
in different noise cases in the Pavia city center data set are
presented in Table I. The optimal values for each evaluation
indicator are marked in bold, and the suboptimal results are
underlined. It can be observed that the results of the proposed
DLR method were optimal in almost all cases, especially when
the intensity of the stripe noise was high or there was particular
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TABLE I

QUANTITATIVE ASSESSMENT RESULTS OF ALL THE COMPETING METHODS

stripe noise, and the superiority of the proposed DLR method
was very significant. In all the cases of different stripe noise
settings, the quantitative evaluation results of SSAHTV and
BM4D were inferior to those of the other methods based
on low-rank matrix or tensor decomposition, as the sparse
noise was not taken into consideration in these two classi-
cal methods. For those typical methods based on low-rank
matrix decomposition, that is, LRMR, LRTV, and LLRSSTV,
relatively strong quantitative evaluation results were obtained
in some cases, but the results were still inferior to those
of the proposed DLR method. Considering the three more
advanced competing methods, LRTDGS, 3-DLogTNN, and
LRTFDFR, high evaluation results could be obtained when the
intensity of stripe noise was low. However, when the intensity
of the simulated stripe noise increased, or when periodic stripe
noise was present, the results of these low-rank-based methods
significantly decreased, which reflects the disadvantages of
removing stripe noise by modeling it as sparse noise. Overall,
the noise removal performance of the proposed DLR method
was the best among all the methods, indicating the superiority
of exploiting the unique properties of stripe noise separately.

Fig. 7 presents the noise removal results of the compar-
ative methods in simulated noise case 4, where the images
were degraded by simulated Gaussian noise, impulse noise,
and vertical stripes. The average PSNR values on the three

selected bands are displayed in brackets in the figure legends.
As presented in Fig. 7, the two classical methods of SSAHTV
and BM4D only removed some of the Gaussian noise and
impulse noise, and they could not remove the stripes. LRMR,
LRTV, LLRSSTV, LRTDGS, 3-DLogTNN, and LRTFDFR
delivered better performance in Gaussian noise and impulse
noise removal, but with uneven stripe noise removal perfor-
mances. Among the different methods, due to the patch-based
processing strategy, LRMR and LLRSSTV could partially
remove stripes, but when the local noise intensity was high,
the stripes could not be removed. In addition, although LRTV
could remove some mixed noise visually, it smoothed out
the details in the images. Even though 3-DLogTNN could
effectively remove Gaussian noise and impulse noise, it was
not able to remove dense stripes. LRTDGS and LRTFDFR
could remove most of the noise; however, the results still
contained obvious residual stripes, and LRTDGS caused sig-
nificant spectral distortion. As can be seen from these results,
the proposed DLR method could perform HSI denoising and
destriping effectively while preserving detailed information.

To compare the spectral recovery capabilities of each
method, Fig. 8 shows the original spectrum (red curve) and
the denoising spectrums (blue curve) of the pixel (193.68) in
case 4 with the Pavia city center data set. It can be seen from
Fig. 8(b) that mixed noise destroyed the spectral signature of
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Fig. 7. Simulation experiment denoising false-color results in case 4. (a) Original image (R: 53, G: 26 B: 66). (b) Noisy image (11.38 dB). (c) SSAHTV
(19.66 dB). (d) BM4D (16.81 dB). (e) LRMR (26.48 dB). (f) LRTV (30.39 dB). (g) LLRSSTV (27.51 dB). (h) LRTDGS (28.36 dB). (i) 3-DLogTNN
(19.80 dB). (j) LRTFDFR (27.86 dB). (k) DLR (34.84 dB).

Fig. 8. Original spectrum (red curve) and the denoising results (blue curve) of pixel (193.68) in simulated case 4. (a) Original. (b) Noisy. (c) SSAHTV.
(d) BM4D. (e) LRMR. (f) LRTV. (g) LLRSSTV. (h) LRTDGS. (i) 3-DLogTNN. (j) LRTFDFR. (k) DLR.

Fig. 9. (a) PSNR and (b) SSIM values on each band in simulated case 4.

the pixel, while SSAHTV, BM4D, LRMR, and 3-DLogTNN
failed to restore the original spectral curve. LRTV, LLRSSTV,
LRTDGS, and LRTFDFR could recover most of the spectrum,
but there were still sharp noises in some bands. As shown
in Fig. 8(k), the proposed DLR method could recover the
spectrum better than other methods. The PSNR and SSIM
values on each band in case 4 of the simulation experiments
were also compared in Fig. 9. Note that 3-DLogTNN achieved
high quantitative evaluation values in bands without simu-
lated stripes, but low evaluation values in bands with stripes.

The figures show that the proposed DLR method obtained the
highest PSNR and SSIM values in most of the bands, which
indicated the superiority of the DLR method further.

For simulated case 5, Fig. 10 shows the denoising false-
color performances of the comparison methods in the Pavia
city center data set. As presented in Fig. 10(b), the original
image was degraded by simulated Gaussian noise, impulse
noise, and random, periodic stripes. SSAHTV, BM4D, LRTV,
LRTDGS, and 3-DLogTNN could not remove the periodic
stripe noise. LRMR and LLRSSTV could only remove part of
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Fig. 10. Simulation experiment denoising false-color results in case 5. (a) Original image (R: 21, G: 33, B: 55). (b) noisy image (10.01 dB). (c) SSAHTV
(21.89 dB). (d) BM4D (15.06 dB). (e) LRMR (27.99 dB). (f) LRTV (24.95 dB). (g) LLRSSTV (26.18 dB). (h) LRTDGS (21.81 dB). (i) 3-DLogTNN
(19.30 dB). (j) LRTFDFR (28.33 dB). (k) DLR (34.91 dB).

Fig. 11. Mean vertical profiles of band 33 in simulated case 5. (a) Original profile. (b) Noisy profile. (c) SSAHTV. (d) BM4D. (e) LRMR. (f) LRTV.
(g) LLRSSTV. (h) LRTDGS. (i) 3-DLogTNN. (j) LRTFDFR. (k) DLR.

the periodic stripes. Similarly, the TV-based methods also led
to a loss of image detail information. From these figures, the
proposed DLR method could remove mixed noise effectively,
while the image details were well-preserved. The mean vertical
profiles on band 33 of the simulation data set are also presented
in Fig. 11 to demonstrate the destriping performance of the
proposed method further. As presented in Fig. 11, the X-
axis represents the number of columns, and the Y -axis is
the mean digital number (DN) value of each column. From
Fig. 11(a) and (b), it can be seen that at the column where
the random, periodic stripe noise existed, the mean digital
value changed drastically, making the original smooth mean
vertical profile fluctuate abnormally. After denoising, as shown
in Fig. 11(c)–(k), only the proposed DLR method could restore
the original curve effectively.

Fig. 12 represents the false-color results of the different
denoising methods in simulated noise case 6 with the sim-
ulation data set. The original images were contaminated by
simulated mixed noise, including Gaussian noise, impulse
noise, and very wide stripe noise. As can be clearly observed
from Fig. 12, none of the methods could remove the wide
stripe noise, except for the proposed DLR method. Some of
these benchmark methods even distorted the images in the
presence of stripe noise, to some extent. Fig. 12(k) is very

similar to Fig. 12(a), further showing the effectiveness of the
proposed method in denoising and destriping.

C. Real HSI Data Experiments

In the following, the denoising and destriping results of
the experiments performed with the three real data sets are
presented.

1) HYDICE Urban Data Set: Figs. 13 and 14 show the
images before and after denoising of band 107 and band 150 in
the HYDICE Urban data set using the different tested methods
and also show partial enlarged details in the red boxes below
the images. The original images were corrupted by dense
stripes and severe mixed noise, including Gaussian noise and
impulse noise. As can be observed, SSAHTV and BM4D
could only remove small amounts of mixed noise. Moreover,
the dense noise at the edges of the images and the wide
stripe noise could not be removed, and those methods even
led to severe distortion of the image. LRMR and LLRSSTV
were relatively successful at removing partial mixed noise,
but there were still residual noises in some concentrated
regions. 3-DLogTNN could hardly remove any stripes, even
if it did an effective job of removing other noise. LRTV and
LRTDGS were almost completely noise-free visually, but both
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Fig. 12. Simulation experiment denoising false-color results in case 6. (a) Original image (R: 27, G: 31, B: 53). (b) noisy image (12.32 dB). (c) SSAHTV
(19.09 dB). (d) BM4D (20.38 dB). (e) LRMR (23.46 dB). (f) LRTV (22.94 dB). (g) LLRSSTV (24.02 dB). (h) LRTDGS (23.81 dB). (i) 3-DLogTNN (24.01
dB). (j) LRTFDFR (22.75 dB). (k) DLR (34.73 dB).

Fig. 13. Denoising results for band 107 of the HYDICE Urban data set via the different methods. (a) Original image. The denoised images of (b) SSAHTV,
(c) BM4D, (d) LRMR, (e) LRTV, (f) LLRSSTV, (g) LRTDGS, (h) 3-DLogTNN, (i) LRTFDFR, and (j) DLR.

caused spectral distortion and loss of image details. LRTFDFR
achieved superior noise removal performance, but in some
places, such as roofs, paths, and the enlarged area of the red
box, residual noise was still present. Overall, the proposed
DLR method removed most of the mixed noise while retaining
details, and it achieved the best results among the different
denoising methods. Fig. 15 shows the original spectrum (red
curve) and denoising results (blue curve) of the pixel (23, 214).
It can be seen that only the DLR method removed noise well
and recovered the clean spectral curve, further verifying the
practicality of the DLR method for use with real data sets.

2) GF-5 Dunhuang City Data Set: As presented in
Fig. 16(a), the GF-5 Dunhuang City data set was contaminated
by distinctive mixed noise, that is, very wide, periodic stripe
noise at the same position on some adjacent bands. This
particular stripe noise case posed a considerable challenge for
the HSI denoising task. In the results of the experiments shown

in Fig. 16(b)–(i), the classical and state-of-the-art methods
showed poor noise reduction effects. SSAHTV could not
remove such wide stripe noise and also made the image
details excessively smooth. It can also be observed that BM4D,
LRMR, LLRSSTV, and 3-DLogTNN could not remove the
wide stripe noise on the left side. The LRTV, LRTDGS, and
LRTFDFR methods, however, showed better noise removal
capabilities, but there were still some noises remaining.
In addition, the denoising abilities of LRTV, LRTDGS, and
LRTFDFR were partly due to their excessive smoothing of
the global space, which caused inevitable distortion of the
image and loss of some detail information. The denoising
performance of the different methods is further illustrated
by the false-color results, as shown in Fig. 17. It can be
further observed in Fig. 17(g) that the global smoothing
of the image by LRTV, LRTDGS, and LRTFDFR resulted
in noise extending from the left half of the image to the
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Fig. 14. Denoising results for band 150 of the HYDICE Urban data set via the different methods. (a) Original image. The denoised images of (b) SSAHTV,
(c) BM4D, (d) LRMR, (e) LRTV, (f) LLRSSTV, (g) LRTDGS, (h) 3-DLogTNN, (i) LRTFDFR, and (j) DLR.

Fig. 15. Original spectrum (red curve) and denoising results (blue curve) of pixel (23.214) with the HYDICE Urban data set. (a) Original. (b) SSAHTV.
(c) BM4D. (d) LRMR. (e) LRTV. (f) LLRSSTV. (g) LRTDGS. (h) 3-DLogTNN. (i) LRTFDFR. (j) DLR.

right. To sum up, the proposed DLR method, as shown in
Figs. 16(j) and 17(j), performed the best of all the methods
while preserving the details of the image, further illustrat-
ing the superiority of the DLR method in removing stripe
noise.

3) GF-5 Yellow River Delta Data Set: Figs. 18 and 19 show
the denoising images of the GF-5 Yellow River Delta data set
obtained via the different methods. The images were corrupted
by dense stripe noise of various widths, severe Gaussian noise,
and impulse noise. The three methods, SSAHTV, BM4D, and
3-DLogTNN, could not remove this kind of mixed noise,
and SSAHTV also caused significant distortion of the images.
In addition, in the LRMR and LLRSSTV results, stripe noise
still remained after denoising. Some methods could more
or less remove some noise, such as LRTV, LRTDGS, and
LRTFDFR, but some of the details in the images were also
lost. It can be seen from Figs. 18(j) and 19(j) that the DLR
method obtained the best noise reduction performance when
dealing with stripe noise compared with the other benchmark
methods.

D. Discussion

1) Parameter Analysis: In the proposed DLR method, the
selection of the regularization parameters λ1, λ2 and ranks
r1, r2 determines the HSI denoising results. In the following,
the impacts of these parameters on the DLR method were
discussed.

The influences of the changes in parameters λ1 and λ2 were
first analyzed based on the denoising results for the images
corrupted by simulated noise in cases 1–6. Notably, the rank
r1 was estimated in two ways: the HySime method and the
following observation, that is, the higher the noise level, the
smaller the optimal value of the desired rank. The rank r2

was fixed as 1. The proposed DLR method was tested with
different parameter λ1 and λ2 values, with λ1 and λ2 selected
from [0.05, 0.1, 0.2, 0.4, 0.6, 0.8] and [0.1, 0.2, 0.4, 0.6, 0.8,
1.0, 1.2], respectively.

Figs. 20 and 21 show the MPSNR values of the DLR
model on the simulated data set, related to parameters λ1

and λ2. When the intensity of Gaussian noise and impulse
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Fig. 16. Denoising results for band 248 of the GF-5 Dunhuang City data set via the different methods (a) Original image. The denoised images of (b) SSAHTV,
(c) BM4D, (d) LRMR, (e) LRTV, (f) LLRSSTV, (g) LRTDGS, (h) 3-DLogTNN, (i) LRTFDFR, and (j) DLR.

Fig. 17. Denoising false-color results (R: 194, G: 246, B: 330) for the GF-5 Dunhuang City data set via the different methods. (a) Original image. The
denoised images of (b) SSAHTV, (c) BM4D, (d) LRMR, (e) LRTV, (f) LLRSSTV, (g) LRTDGS, (h) 3-DLogTNN, (i) LRTFDFR, and (j) DLR.

noise changed in the simulated noise case 1, as shown
in Fig. 20(a)–(d), the DLR method always reached optimal
MPSNR values when λ1 ranged from 0.05 to 0.6 and λ2

ranged from 0.2 to 1.2. In cases 2–6, from Fig. 21(a)–(e),
it can be seen that the denoising performance of the proposed
DLR method improved only slightly when λ2 was increased.
As illustrated in Fig. 21(a)–(c), when adding random stripe
noise of different intensities, a smaller value of λ1 could
bring better results. In addition, when the added stripes were
special cases, as presented in Fig. 21(d)–(e), the DLR method
could obtain optimal MPSNR values when λ1 was not very
low. Therefore, we fixed λ1 = 0.1 in all the simulation
experiments and λ1 = 0.05 in the real HSI data experi-
ments. In addition, the parameter was fixed as λ2 = 1.0
in both the simulation and real data experiments, which
ensured that the denoising effects are acceptable in all noise
cases.

The rank r1 denotes the separation boundary between the
clean HSI and the mixed noise. That is to say, the first r1

principal components of the HSI are inclined to be the clean
HSI that is expected to be obtained. However, it is more
difficult to distinguish the clean signals with a higher noise
intensity, so only a handful of clean signals can survive among
the noise, which means that the value of r1 should be smaller
[60]. Next, the effect of the upper bound rank r1 on the DLR
denoising results was investigated, and the applicability of the
HySime method was tested. In the simulated noise cases 1–6,
the denoising effect of the proposed DLR method was tested
using different rank r1 values for the Pavia city center data set,
with r1 varied among 2, 3, 4, 5, and 6. Similarly, the other
parameters were fixed as λ1 = 0.1 and λ2 = 1.0, and the
upper bound rank r2 was set to 1.

Fig. 22 shows the results of the rank r1 of the proposed DLR
method when fixing the other parameters. As is shown in these
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Fig. 18. Denoising results for band 305 of the GF-5 Yellow River Delta data set via the different methods (a) Original image. The denoised images of
(b) SSAHTV, (c) BM4D, (d) LRMR, (e) LRTV, (f) LLRSSTV, (g) LRTDGS, (h) 3-DLogTNN, (i) LRTFDFR, and (j) DLR.

Fig. 19. Denoising false-color results (R: 302, G: 2, B: 303) for the GF-5 Yellow River Delta data set via the different methods. (a) Original image. The
denoised images of (b) SSAHTV, (c) BM4D, (d) LRMR, (e) LRTV, (f) LLRSSTV, (g) LRTDGS, (h) 3-DLogTNN, (i) LRTFDFR, and (j) DLR.

Fig. 20. Change in the MPSNR values of DLR in simulated case 1, with respect to parameters λ1 and λ2. (a) V = 0.001, P = 0.05. (b) V = 0.01,
P = 0.1. (c) V = 0.05, P = 0.15. (d) V = 0.1, P = 0.2.

figures, the optimal value of the rank r1 was small and identical
for each data set in all the simulated noise cases. The content in
parentheses below the images represents the rank estimated by

the HySime method. It can be seen that the estimated r1 only
provided a high evaluation value according to the MPSNR
index in some of the simulated cases. For the presence of
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Fig. 21. Change in the MPSNR values of DLR in the different simulated noise cases, with respect to parameters λ1 and λ2. (a) Case 2. (b) Case 3. (c) Case 4.
(d) Case 5. (e) Case 6.

Fig. 22. Change in the MPSNR values of DLR in the different simulated noise cases, with respect to parameter r1. Case 1: (a) D = 0.001, P = 0.05
(estimated r1 = 3), (b) D = 0.01, P = 0.1 (estimated r1 = 3), (c) D = 0.05, P = 0.15 (estimated r1 = 2), and (d) D = 0.1, P = 0.2 (estimated r1 = 2);
(e) Case 2 (estimated r1 = 2), (f) Case 3 (estimated r1 = 1), (g) Case 4 (estimated r1 = 1), (h) Case 5 (estimated r1 = 10), and (i) Case 6 (estimated r1 = 2).

Fig. 23. Change in the MPSNR values of DLR in the different simulated noise cases, with respect to parameter r2. (a)–(d) Case 1. (e)–(i) Cases 2–6.

periodic stripe noise, as in case 4, the upper bound rank r1

could not be well-estimated by the HySime method. However,
in the presence of stripe noise, the noise intensity was usually
of the same level. As a result, the rank r1 was usually the
same. In view of this, the rank r1 could be determined by
simultaneously referring to the HySime subspace identification
method and the intensity of the mixed noise.

As discussed in Section II-D, the rank r2 of the stripe
noise matrix was considered to be 1 and was verified by
the simulated experiments. To make our model universal,
the value of the rank r2 was changed among 1, 2, 3, 4,
and 5, to test the denoising results. Fig. 23 presents the
results of the proposed DLR method with different values
of rank r2. As illustrated by these figures, an increase in
r2 value resulted in a slight deterioration in the denoising
performance. To sum up, the rank r2 was fixed as 1 in
our experiments to achieve an acceptable level of denoising
performance.

2) Low-Rank Analysis of Decomposed Components: In this
part, we will illustrate that the two low-rank regularization
terms in the DLR model, which are adopted for the Casorati
matrix of HSI and the stripe noise matrix on each band, can
constrain the clean HSI and the stripe noise, respectively,
without interfering with each other.

Fig. 24(a)–(d) and (g)–(j) shows the decomposed compo-
nents of band 42 in case 5 of the simulation experiment
and band 302 in the GF-5 Yellow River Delta data set after
DLR denoising. It can be seen visually that the DLR method
could separate a clean image, sparse noise, and stripe noise,

which potentially showed the effectiveness of the two low-rank
regularization terms in the DLR model. We also conducted
SVDs on the related matrices. First, the SVDs were performed
on the stripe noise and clean HSI for each band (taking 42
and 302 bands as examples). As shown in Fig. 24(e) and (k),
it can be seen that the number of nonzero singular values of
stripe noise (blue curve) was very small, while the nonzero
singular values of the clean HSI (red curve) were large. That
is, the stripe noise on each band was low rank, while the HSI
on each band was not. Second, the SVDs of Casorati matrix
of HSI and Casorati matrix of stripe noise were executed.
As can be seen from Fig. 24(f) and (l), the singular value
curve of the Casorati matrix of HSI rapidly dropped to 0,
while the singular value curve of the Casorati matrix for stripe
noise slowly dropped to 0, which showed that the Casorati
matrix of HSI was low-rank and the Casorati matrix of stripe
noise was not. Similar observations could be made in the other
experiments, but due to space constraints the illustration of the
decompositions was not given here.

To sum up, the objects of the two low-rank structures of the
clean HSI and the stripe noise are different. That is, the two
low-rank regularizations terms in the proposed DLR model
do not conflict during the model optimization process and can
achieve better matrix decomposition performance.

3) Run Time: Comparing the run time is also a useful way
to evaluate the efficiency of different denoising methods. In the
case of ensuring a good denoising result, less run time is more
conducive to application processing. In the proposed DLR
method, the main computational cost is the update of the three



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 24. Results of each component after DLR denoising and analysis of Casorati matrix and band-wise matrix. The results of band 42 in case 5 of simulation
experiment. (a) Noisy. (b) Denoising. (c) Sparse term. (d) Stripe term. (e) SVDs of band-wise HSI matrix (blue) and stripe matrix (red). (f) SVDs of Casorati
HSI matrix and stripe matrix. The results of band 302 in the GF-5 Yellow River Delta data set. (g) Noisy. (h) Denoising. (i) Sparse term. (j) Stripe term.
(k) SVDs of band-wise HSI matrix and stripe matrix. (l) SVDs of Casorati HSI matrix and stripe matrix.

Fig. 25. Relative change values of DLR, with respect to the iteration number. (a) Case 2. (b) Case 3. (c) Case 4. (d) Case 5. (e) Case 6.

TABLE II

RUN TIME OF THE COMPETING METHODS IN THE THREE REAL HSI DATA EXPERIMENTS (IN SECONDS)

variables during each iteration, and the update calculations
include the shrinkage operation and SVD. The run time of the
denoising methods with the three real HSIs is listed in Table II.
In Table II, we also marked the optimal values for each
evaluation indicator in bold and underlined the suboptimal
results. All the experiments were performed on the same
server, with MATLAB 2017a, using an Intel Xeon E5-2630
CPU with 2.40 GHz and 128 GB of memory. As can be clearly
observed from Table II, the proposed DLR denoising method
had the least run time of all the methods. In addition, as shown
in the previous experimental analysis, the denoising results of
all competing methods were clearly inferior to that of the DLR
method. To summarize, the proposed DLR method obtains
better denoising and destriping results while consuming less
run time and is thus more suitable for practical application
processing than the other methods.

4) Convergence of the DLR Solver: The relative change
� Y − Lk+1 − Sk+1 − Bk+1 �∞ was used to numeri-
cally demonstrate the convergence of the DLR solver [63].

Fig. 25 presents the relative change under cases 2–6 during
each iteration. It can be observed that the relative change
values of the proposed method converged to 0 after the 15th
iteration, which demonstrates the convergence of the DLR
solver on the test data set.

5) Computational Complexity: We now analyze the com-
putational complexity of the proposed Algorithm 1. It mainly
consists of four parts as follows. The first part is updating
Lk+1 ∈ R

I J×K . The main computational cost of subprob-
lem (16a) is the SVD of matrix L with upper bound rank
r1 which requires O(I J Kr1) flops in each iteration. The
second part updates Sk+1 ∈ R

I J×K using the soft-thresholding
shrinkage operator, and for each iteration, O(I J K ) is needed.
The third part updates Bk+1

n ∈ R
I×J , n = 1, 2, . . . , K and

requires the calculation of K SVDs of I × J matrices. Thus,
the complexity for each iteration is O(K I Jr2), where r2 is the
upper bound of the rank of the stripe noise matrix. In addition,
the final part is updating the Lagrange multiplier �k+1 that
requires O(I J K ) flops. Therefore, the overall computational
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complexity for Algorithm 1 is O(kmax(I J Kr1 + K I Jr2 +
2I J K )), where kmax is the number of the iteration steps.

IV. CONCLUSION

In this article, we have proposed a DLR matrix decompo-
sition method for HSI denoising and destriping. The extended
HSI observation model is first established by introducing a
new term to model the HSI stripe noise separately. Second,
to promote the separation of clean HSI signals from the
mixed noise further, the DLR HSI denoising and destrip-
ing model is built based on low-rank matrix decomposition
theory. It simultaneously exploits the low-rank structure of
the lexicographically ordered noise-free HSI, the low-rank
property of the stripe noise on each band of the HSI, and
the sparsity characteristics of the other sparse noise. Finally,
the ALM optimization algorithm is used to solve the DLR HSI
denoising and destriping model efficiently. Extensive simula-
tion and real HSI data experiments were conducted, and the
experiment results clearly showed the superior performance of
the proposed DLR method, compared with the other classical
and state-of-the-art denoising methods, from both visual and
quantitative evaluation perspectives.

However, the proposed method still has much room for
improvement. For example, the proposed method could be
improved by introducing TV constraints to exploit the spatial
characteristics of the stripe noise and the clean HSI. These
issues will be addressed in our future work.
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