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Abstract— Convolutional neural network (CNN)-based feature
fusion of RGB and auxiliary remote sensing data is known to
enable improved semantic segmentation. However, such fusion
is challengeable because of the substantial variance in data
characteristics and quality (e.g., data uncertainties and misalign-
ment) between two modality data. In this article, we propose
a unified gather-to-guide network (G2GNet) for remote sensing
semantic segmentation of RGB and auxiliary data. The key aspect
of the proposed architecture is a novel gather-to-guide module
(G2GM) that consists of a feature gatherer and a feature guider.
The feature gatherer generates a set of cross-modal descriptors
by absorbing the complementary merits of RGB and auxiliary
modality data. The feature guider calibrates the RGB feature
response by using the channel-wise guide weights extracted
from the cross-modal descriptors. In this way, the G2GM can
perform RGB feature calibration with different modality data
in a gather-to-guide fashion, thus preserving the informative
features while suppressing redundant and noisy information.
Extensive experiments conducted on two benchmark datasets
show that the proposed G2GNet is robust to data uncertainties
while also improving the semantic segmentation performance of
RGB and auxiliary remote sensing data.

Index Terms— Deep learning, remote sensing, semantic
segmentation.

I. INTRODUCTION

SEMANTIC segmentation of high-resolution aerial/satellite
images is a fundamental task in remote sensing, in which

the aim is to classify each pixel in a given image with a seman-
tic category. The applications of semantic segmentation range
from urban planning, change detection, and landcover clas-
sification to urban 3-D semantic modeling [1]–[5]. In recent
years, the progress of deep learning in RGB scene image
parsing has significantly promoted the development of remote
sensing image semantic segmentation [6], [7]. Unfortunately,
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the performance from single RGB data is limited due to the
inefficient feature exploration [8].

Beyond RGB, auxiliary remote sensing data are also
widely used for semantic segmentation, such as synthetic
aperture radar (SAR) images [9] and digital surface mod-
els (DSMs) [10]. As different modalities of RGB, these
auxiliary remote sensing data measure the specific prop-
erties of the same geospatial object and provide differ-
ent insights into the comprehensive learning of a semantic
object [11], [12]. Therefore, more interests are paid to utilize
the complementary information from the RGB and auxiliary
remote sensing data to improve the performance of semantic
segmentation [10], [13]. In this article, we focus on semantic
segmentation of RGB and DSM (can also be extended to
IRRG and NDVI), which has been widely investigated as the
development of convolutional neural networks (CNNs) [10],
[14]–[16]. Although progress has been witnessed in the past
years, some issues of semantic segmentation of RGB and
auxiliary remote sensing data are still worth studying.

The first issue is the notable variations between RGB
and auxiliary data. It is reported that RGB and auxiliary
data share different physical and numeric characteristics [10].
Therefore, it is necessary to develop an efficient strategy to
derive informative representation from various types of data
for semantic segmentation. One simple way is to concate-
nate the RGB and auxiliary data into a multichannel tensor
and feed the tensor into a one-stream vision-based network
for training [17]. The different data can thus be directly
fused by local convolution operations across channels, but
this scheme ignores the specificities of RGB and auxiliary
data. Consequently, the two-stream network architectures that
process RGB and auxiliary data in two parallel CNNs have
become more advisable than the one-stream models [18]–[20].
The fusion based on two-stream CNNs is generally per-
formed either by assembling the predictions of two modal-
ities into a unified final output or by merging hierarchical
features from two separate encoders to form enhanced rep-
resentations for the shared decoder [16]. The former predic-
tion fusion solutions usually encounter difficulties in fully
exploiting the complementary information of two modalities
since the two CNN branches have no information interaction
during the forward and backward propagations. Meanwhile,
the feature fusion schemes tend to equally treat RGB and
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auxiliary data, which leads to issues of redundant informa-
tion learning, as the fused cross-modal features are often
directly fed into the subsequent layer during the forward
propagation.

Another issue of semantic segmentation in fusing RGB
and auxiliary data lies in data uncertainties. Although the
combination of RGB and auxiliary data can bring benefits to
remote sensing tasks, the quality and diversity of the data can
bring troubles for efficient information exploration. The Earth
observation data in different modalities are usually acquired
by various platforms and sensors. For example, RGB signals
are measured using optical sensors, whereas LiDAR-derived
DSMs are originally captured by laser scanners. On the one
hand, those measurements may contain varying degrees of
noises and/or anomalies, due to the physical characteristics
of sensors and the complexity of the geographic environ-
ment [21], [22]. On the other hand, the image pixels of the data
acquired by multiple sensors are not always precisely aligned,
even within a careful co-registration process. Low-quality
measurements can introduce exceptional features into CNN
models and impede the learning of informative features,
causing a misunderstanding of geospatial objects. Therefore,
when using auxiliary data to complement RGB for improving
the performance of semantic segmentation, the fusion scheme
should be able to diminish the deep model’s sensitivity to the
unstable quality of auxiliary data.

Based on the aforementioned two issues, we are motivated
to develop a comprehensive deep neural network with a
specially designed gather-to-guide module (G2GM) for seman-
tic segmentation of RGB and auxiliary data. We term our
network as gather-to-guide network (G2GNet), which gathers
cross-modal information to guide the calibration of RGB
response, rather than directly fusing two types of features
to generate cross-modal inputs for the subsequent layers of
the network. The G2GNet provides a mechanism to incor-
porate the auxiliary information only for RGB representation
refinement, thus diminishing the model’s sensitivity to the
low-quality measurements of additional data. To this end,
we insert our G2GM at the end of the two encoders. The
G2GM consists of two components: a feature gatherer and a
feature guider. The feature gatherer harnesses the two types
of information to generate a cross-modal guidance for subse-
quent RGB feature calibration. First, the global information
from each modality is encoded via a self-adaptive seman-
tic region pooling operation, in which the modality-specific
features are distilled with less noise inference. The encoded
cross-modal global information is then combined into a group
of cross-modal descriptors via a gated fusion mechanism. The
feature guider further encapsulates the cross-modal representa-
tion into a channel-wise weight vector, which serves as the cue
to guide the calibration of RGB representations for improved
segmentation performance.

The main contributions of this work are summarized as
follows.

1) We develop a general G2GNet for remote sensing
semantic segmentation, which can selectively absorb the
complementary merits of RGB and auxiliary data to
improve the semantic segmentation performance.

2) A novel G2GM is proposed to adaptively gather the
informative features from the inputs RGB and auxiliary
data by a self-adaptive attention mechanism and then
fuse the gathered features as a set of global descriptors
to guide the calibration of RGB responses for enhanced
feature representation.

3) Extensive experiments demonstrate that the G2GNet can
effectively fuse RGB and auxiliary data to boost seg-
mentation performance and achieve competitive perfor-
mance on two benchmark datasets, i.e., ISPRS Vaihigen
2-D and Potsdam 2-D.

II. RELATED WORK

A. RGB-Based Semantic Segmentation

Semantic segmentation has been a long-standing image
analysis task across multiple research fields. In the earlier
stages, low-level visual cues had been extensively studied for
semantic segmentation. Recently, deep learning has shown its
superiority in semantic segmentation, as it can learn high-level
semantic information that is hard to obtain with the traditional
methods.

With the advent of the first end-to-end fully convolutional
neural network (FCN) [23], the accuracy of urban natural
scene semantic segmentation has been greatly improved. FCN
allows images with arbitrary sizes to be fed as input and gener-
ates pixel-wise semantic predictions for the whole image. Sub-
sequently, the encoder–decoder architecture was introduced
to semantic segmentation for more effective preservation of
object spatial details. The decoder structure progressively
recovers the spatial dimension of objects, making the FCN
upsampling process learnable. Segnet [24] and U-Net [25] also
studied the issue of spatial detail recovery by equipping the
encoder–decoder structure with skip connections to reuse the
detail information from low-level convolutional stages. Fol-
lowing this line, the U-Net++ [26] and Refinenet [27] quickly
improved the skip connection with more advanced transfer
schemes. To strengthen feature representations for objects
with diverse sizes, other researchers also focused on incor-
porating multiscale processing into FCN models [28], [29].
For example, Zhao et al. [30] utilized the image pyramid to
parallelly learn multiscale features with different input scales.
A more popular way is to deploy an atrous spatial pyramid
pooling (ASPP) module as in the case of DeepLab family [31].

The advances in deep network design and natural scene
parsing have immediately inspired progress in remote sens-
ing tasks. Vakalopoulou et al. [32] built an automated build-
ing detector for very high-resolution remote sensing data
based on CNN. Längkvist et al. [6] developed a CNN-based
approach for the pixel-wise classification of multiple objects
in satellite images. For full-resolution labeling of aerial
images, Sherrah [7] adopted the FCN architecture that did
not require a downsampling operation to obviate the decon-
volution or interpolation. Zhao and Du [33] presented a
multiscale convolutional neural network (MCNN) to learn
spatial-related deep features for hyperspectral imagery clas-
sification. Maggiori et al. [34] designed a multiscale neuron
module to alleviate the common tradeoff between recognition
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and precise localization for satellite imagery segmenta-
tion. Liu et al. [35] proposed a self-cascaded network to
address the challenges of human-made object confusion and
fine-structured object intricacy. Sun et al. [36] adopted a
residual encoder–decoder architecture to mitigate the prob-
lem of insufficient learning. Zheng et al. [37] designed a
foreground-aware relation network to alleviate the problems
of large intraclass variance in background and foreground
imbalance in high spatial resolution remote sensing imagery.

B. Semantic Segmentation of RGB and Auxiliary Data

Although the vision-based deep networks have attained
promising segmentation results for RGB scenes, the ambiguity
of visual cues continues to restrict the network performance.
Therefore, numerous researchers have become interested in
unifying information from other modality data to improve
RGB segmentation accuracy.

In the computer vision community, a revealing experiment
in FCN [23] proved that depth information is useful in
promoting RGB segmentation performance. With the rapid
development of consumer-level depth sensors, e.g., Microsoft
Kinect [38], RealSense [39], considerable effort was subse-
quently devoted to RGB-D semantic segmentation. To facili-
tate an immediate use of vision-based FCNs, Su and Wang [40]
directly treated depth data as an additional channel, which is
fed together with RGB data into a single FCN for semantic
prediction. Other researchers utilize depth data as a guid-
ance to tailor 2-D CNN into 2.5-D behaviors, to explicitly
incorporate geometry information into CNN [41]. To bet-
ter identify the differences between two modalities, a more
popular approach for RGB-D segmentation is to deploy a
two-stream network architecture that can parallelize the convo-
lutional feature extraction for each modality with two FCNs.
For instance, FuseNet [42] and RedNet [43] equipped their
encoders with two FCN branches for each input modality and
extended cross-modal fusion (CMF) from the final layer to the
multilevel convolutional stages. Residual learning was further
used in RDFNet [44], with the aim of fully preserving the
modality-specific characteristics during fusion.

As the Earth observation data are rich in different modal-
ities [45], [46], multimodal semantic segmentation of RGB
and auxiliary data [18], [47] has also been investigated
recently with the help of CNNs. An early work of [14]
showed that combining multimodal features with CNNs is
essential in labeling some specific categories and can sig-
nificantly boost the overall performance of remote sensing
classification. In [48], the CNN-based analytic outputs of
multispectral images and spaceborne remote sensing videos
are fused for semantic scene interpretation. To enable an
immediate feature-level fusion, Paisitkriangkrai et al. [15]
trained a CNN with a five-channel input data concatenated
by orthophoto, DSM, and normalized DSM (nDSM) images.
Similarly, Volpi and Tuia [17] used all spectral channels (near
infrared, R, G, and B) and DSM as the input for their net-
work. Alternatively, Liu et al. [19] proposed a decision-level
fusion scheme that first obtain two probabilistic results from

an FCN trained on VHR optical imagery and a linear
classifier performed on handcrafted LiDAR features and then
combine the two results with high-order CRFs for dense
semantic labeling. To counter the blurry effect of bound-
aries in semantic segmentation, Marmanis et al. [20] explicitly
incorporated class boundaries detected from DSM data and
color images into semantic predictions for the refined seg-
mentation results. Audebert et al. [10] applied two SegNets to
orthophoto image and DSM/nDSM/NDVI (normalized differ-
ence vegetation index) data and investigated the early fusion
and the late fusion of convolutional features of two modal-
ities. Similarly, Piramanayagam et al. [49] studied the early
fusion, the composite fusion, and the late fusion. For remote
sensing classification beyond RGB data, a newly proposed
X-ModalNet [9] exploited the mechanism of semisupervised
transfer learning with cross-modality data in remote sensing.

In summary, most of the existing methods focus on merg-
ing features extracted from RGB and auxiliary data into
cross-modal representation, which is utilized as the input for
the following classifier. However, we consider that overuse of
auxiliary data could be a risk factor for segmentation accuracy
because low-quality measurements from additional data could
disturb network learning. For example, DSM data generated
by oblique photogrammetry usually contain missing data and
noisy height values. In this work, we address these problems
by performing CMF in a gather-to-guide fashion, which is
capable of filtering exceptional features while preserving the
specificity of different input modalities.

C. Attention Mechanism

Attention mechanism has been widely adopted as an effec-
tive learning tool to bias the allocation of computational
resources of CNN models to emphasize the most informa-
tive features at the regional or global scale. Common deep
networks utilize the convolution operation to fuse spatial and
channel-wise information for extracting informative features,
but they are limited to the local nature of the convolution
kernel. To overcome this limitation, a variety of attention
modules have been developed for global context information
capturing in semantic segmentation. To capture the spatial
correlations between features, a nonlocal operation has been
devised [50] to calibrate the response at a position by weighted
averaging the features at all positions. SENet [51] proposed a
channel-attention mechanism for adjusting the importance of
different feature maps by explicitly modeling the dependency
between channels. To achieve adaptive receptive fields of
neurons, SKNet [52] fused multiple kernels with channel-wise
attention. DANet [53] inserted two types of attention mod-
ules, i.e., a position attention and a channel attention, into
a dilated FCN to model the semantic interdependencies in
spatial and channel dimensions. Moreover, as remote sensing
images usually cover a large spatial extent, the long-range
spatial relations between entities are more prominent than
natural scene images. Recent works [54], [55] also introduced
spatial and channel-attention modules to capture the global
relationships between any two positions or channel maps for
semantic segmentation of aerial images.
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Fig. 1. Overview of the proposed G2GNet architecture.

III. METHODOLOGY

In this section, we elaborate on the proposed G2GNet for
improved semantic segmentation of RGB and auxiliary data,
starting with an overview of the network.

A. Overview

The complete framework of the proposed G2GNet is
shown in Fig. 1. The G2GNet is deployed as a two-stream
encoder–decoder network architecture for full-resolution seg-
mentation. The encoder of each stream consists of four resid-
ual layers. The G2GM, as the center building block of our
network architecture, is appended on top of the two encoders to
unify information from the two streams and calibrate the RGB
feature response. The inputs of the G2GNet are the paired
images consist of an RGB and an auxiliary modality data.
The output is a pixel-wise semantic segmentation map.

In G2GNet, the two encoders separately extract hierarchical
features from each input modality and gradually generate
their high-level semantic feature maps. First, the feature maps
generated by RGB-layer 4 and Aux-layer 4 are fed into
the feature gatherer of the G2GM. In the feature gatherer,
the self-adaptive region pooling (SAP) squeezes the fea-
ture maps of a given modality into compact global descrip-
tors (also generates dimension reduced feature maps with
its internal operation), and the CMF block aggregates the
global descriptors of two modalities into a set of cross-modal
global descriptors, which absorbs the complementary merits
of the two modalities. Second, the feature guider of the
G2GM regards the cross-modal global descriptors and the
reduced feature maps of RGB-layer 4 as inputs. In detail,
the cross-modal guider (CMG) derives per-channel weights
from the cross-modal global descriptors and applies them to
the reduced feature maps of RGB-layer 4 to guide RGB feature
response calibration. Finally, the guided feature maps are fused

Fig. 2. Different responses encoded by global max-pooling and global
average-pooling operations. Values in rectangles are weights derived by
different pooling operations on different feature maps.

with the feature maps of RGB-layer 4, and the fused features
are propagated to the segmentation decoder for resolution
reconstruction and semantic prediction.

B. Feature Gatherer

Features learned by deep CNNs contain not only rep-
resentative cues but also redundant information and noises
that may degrade the performance of semantic segmentation.
To calibrate the response of different feature maps, previous
works generally encoded the importance of feature maps into
channel-wise weights via global max and/or average pooling
operations. The weights are then applied to feature maps
to highlight the informative features while suppressing the
redundant ones [51]. However, these global pooling techniques
treat all pixels equally and ignore the semantic/geometric con-
tent differences between the regions. Therefore, the previous
techniques either fail to deal with noisy features or accidentally
lose the geometric details. An example is shown in Fig. 2.
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Fig. 3. SAP operation. freduce(X; W) = W(X) is a 1 × 1 convolution layer without bias.

In Fig. 2, we chose three types of representative feature
maps for illustration, termed boundary, region, and noisy
feature maps. Note that the warmer is the color, the higher
is the feature response (pixel value). For instance, the region
feature map has a high response on pixels of building region
and it is thus important for correctly segmenting a building.
In contrast, the noisy feature map has a high response on
pixels of uninformative region and it thus contributes less
or even harmful for semantic segmentation. Therefore, our
goal is to extract the global information of these feature maps
and encode them as weights to apply on the original feature
maps to preserve the informative features while suppressing
the uninformative ones. However, for instance, if adapting a
global average pooling, the boundary feature map will yield
a small weight value (−0.212), meaning that the importance
of geometric (edge) features is underestimated. As edge pixels
only occupy an extremely small area, their weights could be
smoothed through an average pooling. From Fig. 2, the global
max pooling is also problematic. It can yield a large weight
value (0.268) for noisy feature map that has strong response
on uninformative features, which is even larger than that of
boundary feature map (0.219) and region feature map (0.194).
This does not help to filter the noisy features and even impedes
the learning of informative features.

To gather global representations with awareness to context,
we therefore design an SAP method to encode the feature maps
of different modalities into representative global descriptors.
These descriptors are further fused across modalities for infor-
mation exchange. With the rich cross-modal global descriptors,
we finally infer a channel-wise weight vector for RGB feature
refinement.

1) Self-Adaptive Region Pooling: From Fig. 2, we can
observe that different feature maps of a given data modality
focus on different contexts, i.e., some maps highlight the
object regions of specific classes, while some others prefer
to highlight boundaries of objects. To encode the importance
of a feature map at the region level, we introduce an SAP
operation, which encodes the context of each feature map into
a global descriptor, as shown in Fig. 3. The SAP first enhances
the given features X ∈ R

c×h×w through a 1 × 1 convolution
layer, followed by a commonly used ASPP module [31] for

feature enrichment with multiscale contextual information.
The enriched feature maps Y ∈ R

n×h×w are then processed by
a softmax function to generate the weight maps B ∈ R

n×h×w,
which is formulated as follows:

Bk[i, j ] = eYk [i, j ]∑h
i=1

∑w
j=1 eYk [i, j ]

(1)

where Bk[i, j ] and Yk[i, j ] represent the values at position
(i, j) in the kth map in B and Y, respectively. The adoption
of a softmax operation helps to preserve the response of the
most prominent regions (e.g., semantic regions that have high
response) while smoothing the less representative and noisy
areas in an obtained weight map. Hence, compared to the input
feature maps Y, the weight (feature) maps in B focus more
on the prominent semantic regions and we term B as semantic
region maps.

With the semantic region maps B, it is ready to embed the
global context information in X into a series of representa-
tive descriptors. To create more compact representation and
alleviate the computation burden, the feature maps X with
dimension c is first reduced to A = freduce(X; W) ∈ R

m×h×w

with 1 × 1 convolution layer, in which case m is empirically
set as 128. For each feature map in A, we compute an
n-dimensional global descriptor encoding its global informa-
tion by applying B to it, as shown in Fig. 3. Specifically,
we utilize Al ∈ R

h×w to represent the lth feature map
of A, with al ∈ R

hw as the corresponding reshaped vector.
Similarly, the semantic region maps B are reshaped to the
matrix Bre ∈ R

n×hw . Then, the lth global descriptor vector
gl ∈ R

n is computed by

gl = Bre × al . (2)

The explanation of (2) is as follows. As each seman-
tic region map in B focuses on different semantic regions,
the kth value in the global descriptor gl then indicates the
response intensity of an lth feature map Al to the semantic
regions in the kth region map Bk . In other words, the kth value
in gl also implies whether Al contains useful information in
semantic region represented by Bk . The SAP can be regarded
as performing a region-guided pooling to encode the global
information of a feature map into a semantic region-aware
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Fig. 4. Visualized mapping relationship between a feature map and its global
descriptor. (a) and (b) Mapping relationship for RGB and auxiliary data,
respectively. The value glk indicates how much informative information is
contained in Al , with respect to the semantic region given in Bk . With different
semantic regions learned from cross-modal data, different information is
encoded in RGB and auxiliary global descriptors. (a) RGB global descriptor.
(b) Aux global descriptor.

vector. Compared with global max-/average-pooling operation
that compresses the global information of a feature map into
a single scalar, our SAP encodes more regional semantic
information with a vector. To better understand our SAP,
an illustration of the relationship between a feature map and
its global descriptor is given in Fig. 4.

Take Fig. 4(a) as an example, where Al is the lth feature
map in A, Bk is the kth semantic region map in B, and gl is
the global descriptor regarding Al . For intuitive understanding,
we use the original RGB image to assist the visualization
of feature map Al and use the red dots to represent the
encoded semantic region of Al . Then, the value glk in gl

indicates the response of Al with respect to the semantic
region (hot color) in Bk . In this case, if Al contains rich
information in the region represented by Bk , glk will receive
a high value. Otherwise, if Bk prefers boundary information,
glk with a large value will indicate that Al contain boundary
clues. In this way, the semantic information of several regions
in an original feature map can be distilled into a context-aware
global descriptor, instead of a scalar calculated by global
average- or max-pooling operators with only a smoothed or
maximum response intensity.

2) Cross-Modal Fusion: RGB data can provide much more
favorable features for multiobject segmentation than other data
types, such as DSM/nDSM, but also brings ambiguity because
of complex textures. It is hence favorable to integrate comple-
mentary parsing merits of an auxiliary modality to enhance
the features derived from RGB data. For example, the color
images derive similar textures of the low and high vegetation
objects, while nDSM data can provide clear different features.

To fully exploit the advantages of different modality data,
we extract global descriptors for features learned from RGB
and auxiliary data with SAP. Then, we aggregate the global
descriptors of two modalities into cross-modal features that
embed the information from auxiliary data into the descrip-
tors of RGB images. Although multimodal features contain
complementary information, they may also have different
uninformative noise/controversial information and context gap
caused by the discrepancy between data domains. In such
a case, aggregating descriptors obtained from different input
modalities without information selection can be disadvanta-
geous for CMF. Therefore, we introduce an effective CMF
procedure with a gated structure, as shown in Fig. 5.

Let Grgb ∈ R
n×m and Gaux ∈ R

n×m be the two
modality-specific descriptor sets generated from RGB data

Fig. 5. Pipeline of the proposed CMF operation.

Fig. 6. Calibration of RGB feature response with cross-modal guidance.

and auxiliary data, respectively. Information in Grgb and Gaux

is first correlated through a concatenation operation and a
1 × 1 convolution layer to obtain a more abundant fused
descriptor set Gfus ∈ R

n×m . A sigmoid function is then applied
to Gfus to yield weights (W, 1-W) ∈ R

n×m that measures
the contributions of descriptors in Grgb and Gaux. With W,
the gated fusion can be performed as follows:

Ĝ
rgb = Grgb � W; Ĝ

aux = Gaux � (1 − W) (3)

where � denotes the Hadamard product. In (3), the gated
fusion optionally allows information to flow through along
with W and 1-W, which determines how much the infor-
mation of a certain modality should be preserved. With the
refined descriptors Ĝ

rgb
and Ĝ

aux
, we can acquire a series of

fine-grained cross-modal global descriptors by

Ĝ = Ĝ
rgb + Ĝ

aux
. (4)

The cross-modal global descriptors Ĝ are then used to
enhance the RGB feature representation, which can be
described as a feature guider.

C. Feature Guider

The feature guider is designed to calibrate the compact RGB
feature maps A with the global information from enriched
cross-modal descriptor Ĝ. The architecture of the feature
guider is shown in Fig. 6.

The feature guider first derives a channel-wise guide weight
vector Wguide from the cross-modal global descriptor Ĝ to
explore the importance of each feature map in A. The guide
weight vector is then used to calibrate the information in A by
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Fig. 7. Example of heat map visualization of unguided feature maps and guided feature maps. The warmer is the color, the higher is the response of features.

adaptively preserving the representative feature maps and sup-
pressing the uninformative/noise features. In order to obtain
the channel-wise guide weight vector Wguide, we squeeze the
cross-modal global descriptors into a global vector denoted as
v ∈ R

m×1 via a weighted average operation and then transform
the global vector v via two 1 × 1 convolution layers to learn
the nonlinear interaction. Subsequently, the sigmoid function is
used to generate a channel-attention weight. Detailed workflow
for the generation of the guide weight vector is described by
the following equation:

Wguide[k] = 1

1 + e−v[k]
; v[k] = Conv

(∑n
i=1 ĝk[i ]

n

)
. (5)

In (5), Wguide[k] and v[k] are the values at the kth posi-
tion of Wguide and v, respectively, while ĝk is the kth vec-
tor (descriptor) in Ĝ, where Ĝ comprises the set of
cross-modal global descriptors.

The vector Wguide ∈ R
m×1 can now be readily used to guide

the refinement of the RGB feature maps A ∈ R
m×h×w through

a gated mechanism as follows:
Aguided

l = Al · Wguide[l] (6)

where l ∈ {1, . . . , m} is the channel index. The information in
Al will be largely preserved with Wguide[l] approximating 1,
while it will be erased when Wguide[l] is close to 0. The
guide weight vector Wguide thus controls the information flow
of Al . For perceptual understanding, the refinement effect of
the feature guider is shown in Fig. 7.

Fig. 7 shows the response distributions of different feature
maps. The feature map shown in the top right of Fig. 7 focuses
on the interior area of building class, whereas the counterpart
in the bottom right of Fig. 7 yields noisy responses across the
image. With the cross-modal guidance from feature guider,
the informative features are efficiently preserved, whereas the
noisy features are sufficiently suppressed, in the corresponding
guided feature maps. In this way, the redundant and noisy
information is largely filtered by the feature guider, enabling
the RGB features to be more concentrated on the semantic
segmentation task.

IV. EXPERIMENT

To validate the effectiveness of the proposed G2GNet,
experiments were conducted on two widely used bench-
mark datasets, ISPRS Vaihingen 2-D and Postdam 2-D [56].
In Sections IV-A–IV-E, we will detailedly describe the two
datasets, the experimental settings, and results, and the com-
prehensive analysis.

A. Dataset

The ISPRS Vaihingen 2-D and Postdam 2-D are two bench-
mark datasets launched in the ISPRS 2-D semantic labeling
contest. These datasets are manually annotated with pixel-wise
labels. Each pixel is classified into one of the following six
land cover classes: impervious surface (Imp.S.), buildings
(Build.), low vegetation (Low.V.), trees, cars, and clutter/
background (e.g., containers, tennis courts, or swimming
pools).

1) ISPRS Vaihingen: The Vaihingen dataset contains
33 patches with 9-cm/pixel resolution collected over a
1.38 km2 area of the city. Each of the patches consists of
a three-brand IRRG (NIR, R, and G) true orthophoto (TOP)
image and two complementary modality data (the correspond-
ing DSM and nDSM). The size of each image is approximately
2500 × 2000 pixels. The dataset is officially split into two
groups, 16 images for training and 17 images for testing. This
official setting is also followed in our experiments.

2) ISPRS Potsdam: The Potsdam dataset contains
38 patches with 5-cm/pixel resolution, covering a spatial area
of 3.42 km2. Each patch consists of a four-brand (NIR, R, G,
and B) TOP image and the corresponding DSM. In addition
to the DSMs, the nDSMs are provided by the official setting
with two different normalization methods. The size of all
images is 6000 × 6000 pixels. In our experiment, 24 images
are used for training, and the remaining 14 images are used
for testing, according to the official setting.

B. Experimental Setup

1) Implementation Details: The proposed G2GNet was
implemented with the Pytorch framework, and all our models
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were trained with the stochastic gradient descent optimizer on
NVIDIA GTX 2080Ti GPUs. The initial learning rate was set
to 0.01, and the value is decreased step by step via a poly
learning rate strategy. The momentum was set to 0.9, and
the weight decay was set to 5e−4. The ResNet-101 [57] was
employed as the backbone model for our experiments, and the
batch size was set to 6. Considering that the original remote
sensing images are too large to be used as input, we cropped
the training images into 640 × 640 patches. Data augmentation
techniques, including random flipping, angle rotation, scaling,
and cropping, are adopted on these patches to avoid overfitting.
The run time of the G2GNet for an image of 640 × 640 with
one GPU is about 0.2 s.

2) Evaluation Metric: The numeric performance of the
proposed G2GNet model on the two datasets is evaluated
by the following commonly used metrics: precision, recall,
F1-score (F1), mean F1-score (mF1), and overall accuracy
(OA). The evaluation is based on an accumulated confusion
matrix, from which precision, recall, F1, and OA can be
derived

Precision = 1

N

N∑
k=1

TPk

TPk + FPk

Recall = 1

N

N∑
k=1

TPk

TPk + FNk

F1 = 2 · Precision · Recall

Precision + Recall

OA =
∑N

k=1 TPk∑N
k=1 TPk + FPk + TNk + FNk

(7)

where TPk , FPk , TNk , and FNk denote the number of true
positive, false positive, true negative, and false negative pixels
for object indexed as class k, respectively.

3) Experimental Description: The proposed G2GNet was
evaluated on the Vaihingen test set. Following the previous
works, the three-band IRRG images on this dataset were
adopted as a substitution for the RGB input. Besides, as many
methods utilized the NDVI data as the auxiliary image for
segmentation, we also extend our G2GNet to the segmentation
of RGB(IRRG) and NDVI data. The NDVI of each TOP image
can be computed as follows:

NDVI = NIR − R

NIR + R
(8)

where NIR and R denote the value of near-infrared and red
bands, respectively. The nDSM and NDVI data were, respec-
tively, fed together with IRRG images into our two-stream
G2GNet. The second group of experiments was conducted on
the Potsdam test set. The data configurations are similar to
those in the experiments on the Vaihingen dataset, without
the usage of primary data. The normal RGB images were fed
together with nDSM or NDVI into the G2GNet for semantic
inference.

As the two datasets both contain color images and sev-
eral types of auxiliary data (e.g., DSM, nDSM, or NDVI),
hence, they are suitable for testing whether G2GNet can
be generalized into different remote sensing data. Moreover,

measurement uncertainties (e.g., missing data of DSM) and
labeling inaccuracy of these datasets are common in real-world
conditions. From a practical point of view, those data quality
issues are helpful in revealing our model’s ability to prevent
exceptional feature propagation from low-quality data.

C. Results on Vaihingen Dataset

The comparison results with the state of the art on the
Vaihingen test set are listed in Table I. Details on data used
by different methods are also presented in Table I. Most of
the methods utilize the auxiliary DSM data; some of them
leverage both DSM and NDVI data, and a few of them use
the single IRRG (TOP) image. This trend suggests that most
of the methods manage to exploit the rich complementary
information of different remote sensing data for semantic
segmentation.

In Table I, it is interesting that in the top-ranking list, the two
methods of HUSTW5 and SBANet only use IRRG data for
segmentation but achieved higher OA and/or mF1 score than
the other comparison methods that fuse the IRRG and auxiliary
data. We suspect that those fusion-based semantic segmenta-
tion methods do not fully consider the data uncertainties of
the additional modalities when fusing them with IRRG data,
thus leading to inferior performance. For instance, the DSM
data contained in the Vaihingen dataset are generated by dense
image matching, resulting in the data missing of texture-
less areas and inaccurate features in vegetation areas. The
low-quality measurements could introduce exceptional fea-
tures into deep networks and propagate error information for
semantic prediction. Compared with those listed fusion-based
methods, the proposed G2GNet seems to be more capable of
incorporating the additional data to complement the IRRG
segmentation. The proposed G2GNet gains over the other
fusion-based methods by 1.4%–7.3% in terms of OA. The
G2GNet also favorably outperforms HUSTW5 and SBANet
in terms of both OA and mF1 score, by incorporating either
nDSM or NDVI data with the IRRG images. The G2GNet
performs CMF in a gather-to-guide manner, by which the
exceptional features are suppressed, while the informative ones
are aggregated to guide the IRRG response refinement. The
qualitative comparison results are shown in Fig. 8 for visual
inspection.

According to the types of data used for segmentation,
three methods (with available visual results) are chosen
for comparison, as shown in Fig. 8. The samples include
HUSTW5 (IRRG-only), DLR_9 (IRRG+nDSM), and RIT_7
(IRRG+nDSM+NDVI). The results of our G2GNet in the
first two rows are obtained by fusing IRRG with nDSM, and
those in the last two rows are derived by combining IRRG
with NDVI. The results in Fig. 8 show that the G2GNet can
achieve coherent labeling of various types of urban objects,
whereas the other methods somewhat suffer from inconsistent
segmentation effects, particularly for the building category that
presents a large variation in appearance. The HUSTW5 uses
only IRRG data for semantic segmentation, which is prone
to be affected by confusing textures. For example, in the first
row, part of the building (bottom right of the original IRRG
image) is visually similar to the category of low vegetation.
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TABLE I

QUANTITATIVE COMPARISON RESULTS ON THE ISPRS VAIHINGEN CHALLENGE 2-D TEST SET, WHERE THE VALUES IN BOLD ARE THE BEST.
THE SHORT NAMES OF DIFFERENT METHODS ARE CITED FROM THE CHALLENGE EVALUATION WEBSITE

Fig. 8. Qualitative comparison results on the Vaihingen test set. (a) IRRG. (b) nDSM/NDVI. (c) Label. (d) RIT_7. (e) DLR_9. (f) HUSTW5. (g) G2GNet(ours).

Meanwhile, in the last row, the same building at the bottom
of the IRRG image has notably different appearances from its
roof. However, we are unable to determine the reason for the
behavior of DLR_9 and RIT_7. As the nDSM in the first row
offers available geometric cues to detect a complete building,
the two methods both misclassified a small part of the building

as low vegetation. In the second row, the large building with
a weak roof texture was poorly reconstructed in nDSM. The
anomalies of nDSM seem to have an impact on RIT_7, but not
on DLR_9. We speculate that the direct feature-level fusion
(via feature summation or concatenation) as in RIT_7 may
introduce exceptional features from low-quality measurements
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TABLE II

QUANTITATIVE COMPARISON RESULTS ON ISPRS POTSDAM CHALLENGE 2-D TEST SET, WHERE THE VALUES IN BOLD ARE THE BEST.
THE SHORT NAMES OF DIFFERENT METHODS ARE CITED FROM THE CHALLENGE EVALUATION WEBSITE

Fig. 9. Qualitative comparison results on the Potsdam test set. (a) RGB. (b) nDSM/NDVI. (c) Label. (d) AZ3. (e) RIT_4. (f) SWJ_2. (g) G2GNet(ours).

that disturb the final semantic inferring, while simply ensem-
bling results of different modalities or models as in DLR_9 can
be dominated by IRRG predictions. Both the above fusion
strategies can hardly fully exploit the complementary merits
of the two input data. By comparison, the proposed G2GNet
is better at taking advantage of the two input data. This
superiority can also be interpreted from the fourth row, where
the building (at the bottom) in the NDVI image shows a
more consistent appearance in different parts, and the G2GNet

satisfactorily captured such cues to complement IRRG for
generating intact segmentation maps.

D. Results on Potsdam Dataset

The quantitative comparison results between G2GNet and
other competitors on the Potsdam test set are listed in Table II,
where the overall situation is similar to that of the Vaihingen
dataset. The two RGB-only methods, AFNet and SBANet,
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achieve better performance in terms of OA, and they also
gained higher mF1 scores compared with most of the other
methods including those configured with various types of
auxiliary data. We again suspect that those fusion-based
methods may lack the ability to simultaneously suppress
the erroneous information from input modalities while pre-
serving their modality-specific features during fusion. Hence,
the auxiliary data did not substantially improve their RGB
counterpart, and they sometimes may also worsen the final
segmentation results. From the table, the G2GNet reaches the
value of 92.2% for the OA and 93.44% for the mF1 score when
using nDSM as the additional input. G2GNet gains over the
other fusion-based methods by 1.5%–14.4% in OA. Besides,
by combining RGB with NDVI, the G2GNet still obviously
excels all other methods in terms of mF1 score. As our
segmentation decoder is similar to many of the comparison
methods, the gain in numerical accuracy implies that the pro-
posed G2GM is able to strengthen RGB feature representation
for improved semantic prediction. The qualitative comparison
results are shown in Fig. 9.

In Fig. 9, the SWJ_2 and AZ3 (with available visual
results) are chosen as the representatives of the RGB-only
and fusion-based methods, respectively. The RIT_4 presented
in the same work of RIT_7 is also added to assist the visual
evaluation. The visual results show that despite the use of
DSM/nDSM data, AZ3 and RIT_4 still fail to coherently label
some buildings with confusing textures. As shown in the first
row, the completeness and the geometric structures of some
buildings labeled by AZ3 and RIT_4 are both unsatisfactory.
Moreover, the two methods both misclassified the helipad
on top of a building as a road due to interruptions caused
by erroneous height information (missing data) of nDSM.
SWJ_2, which uses only the TOP image, is able to avoid the
influence of data noises and anomalies from the additional
modalities, but it is also easily affected by texture ambiguity
and illumination changes, as depicted by the results in the sixth
column. Equipped with a two-stream network, our proposed
G2GNet model is able to procure highly robust and precise
segmentation results for the uneven regions, as shown in the
last column of Fig. 9. The G2GM deployed in our model
is adept at absorbing the useful information of two input
modalities to maximize the RGB segmentation accuracy. More
representative examples can be found in the third and fourth
rows of Fig. 9. In the third row, the bare land is difficult
to decipher in the RGB image, but it is distinguishable in
NDVI data. Although this bare land was wrongly annotated
as low vegetation in the ground truth labels, it is successfully
delimited by our G2GNet. By contrast, AZ3 and RIT_4 are
only able to detect extremely small parts of this bare land,
as they also utilize the auxiliary NDVI data for segmentation.
Besides, it is not surprising that SWJ_2 completely misinter-
preted this bare land as low vegetation due to the lack of
essential cues from NDVI data. In the fourth row, the large
building is weakly distinguishable in the RGB images but
is prominent in the NDVI image. Therefore, most of the
methods can recognize the building, but the G2GNet draws
out more accurate boundaries by effectively highlighting the
RGB response with NDVI information.

TABLE III

ABLATION STUDY ON THE VAIHINGEN AND POTSDAM TEST SETS

E. Experimental Analysis

1) Ablation Study for Complementarity Exploitation: To
further verify whether the G2GNet is truly effective in unifying
information of two modalities for extending the performance
bounds of RGB/IRRG segmentation, we conducted ablation
studies on both Vaihingen and Potsdam test sets. The RGB
branch of the G2GNet is used as the baseline network, and
the training settings are the same as those in our cross-modal
version of G2GNet. The quantitative results are listed in
Table III. Compared with the baseline network, the G2GNet
yields an obvious increase in F1 score for the different
categories on both datasets, by either using nDSM or NDVI
as the auxiliary data. For the Vaihingen test set, the G2GNet
boosts the baseline network at most by 1.8% and 1.93% in
terms of OA and mF1 score. The G2GNet also improves
the baseline network by 1.9% and 1.47% in the Potsdam
test set. The accuracy gains of G2GNet on both datasets
probably contribute to the enhanced segmentation in those
uneven regions that are hard to interpret using the RGB/IRRG
image. Such evidence can be partially found in the visualized
results, as presented in Fig. 10.

In the first two rows of Fig. 10, the textures of the two build-
ings (highlighted by red rectangle) in the original RGB/IRRG
images are visually confusing with the surrounding objects
or other categories. The baseline network that uses only the
RGB/IRRG images as input can hardly capture the complete
context of the building, causing semantic inconsistencies in the
predicted results. In the nDSM, the height information can
provide clear geometric cues for delimiting the highlighted
buildings from their surroundings. Such cues are desirably
exploited by the G2GNet to complement the RGB/IRRG
segmentation. Similarly, the NDVI images as shown in the
last two rows of Fig. 10 offer an essential spectral supplement
to the RGB/IRRG signals, and they are absorbed by G2GNet
for the coherent labeling of those associated categories.

2) Ablation Study for Different Network Configurations:
Ablation studies were also conducted to explore the effects of
different network configurations. We first studied the effect of
different pooling operations on semantic segmentation perfor-
mance. In the feature gatherer part of our G2GNet, we replaced
the proposed SAP with the global average-pooling (GAP)
and the global max-pooling (GMP) operation. The numerical
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Fig. 10. Qualitative results of ablation study on the Vaihingen and Potsdam
test sets. (a) RGB/IRRG. (b) DSM/NDVI. (c) Label. (d) Baseline. (e) G2GNet.

TABLE IV

ABLATION STUDY ON THE VAIHINGEN AND POTSDAM TEST

SETS WITH DIFFERENT POOLING OPERATIONS

results are listed in Table IV. For both datasets, the G2GNet
with our proposed SAP achieves the best performance in
most metrics. Comparing to GAP and GMP that equally treat
all pixels in a feature map, the SAP leverages the region
context in a feature map for feature refinement is demonstrated
to be more effective in the improvement of segmentation
performance.

We then studied the number of semantic region maps in
feature gatherer denoted as n, which is the main parameter
in our G2GM. From Table V, with the number increase of
semantic region maps at first, the segmentation accuracy for
most of the metrics and categories also increases and reaches
an optimal level when n = 64. However, as the continuously
increasing of the number, the segmentation accuracy decreases
for most of the metrics and categories. The experimental
results imply that 64 is a good choice for the semantic region
map number. We speculate that increasing n from 16 to 64 can
distill more informative regional features with the increase
in semantic region maps, thus providing rich information
for representation enhancement in the subsequent process of
G2GM. However, when n is increased from 64 to 128, many

TABLE V

ABLATION STUDY FOR THE NUMBER OF SEMANTIC REGION MAPS

TABLE VI

ABLATION STUDY OF DIFFERENT NETWORK CONFIGURATIONS

newly added semantic region maps become redundant, which
not only consume computational resource but also propagate
uninformative features to the following process, thus impeding
the precise semantic segmentation.

To better understand the G2GNet architecture, the effects of
inserting more G2GMs in the different convolutional stages
of the G2GNet’s encoder are investigated. The quantitative
results on the Potsdam test set are listed in Table VI,
where R1, R2, R3, and R4 denote the G2GMs inserted in
residual layers 1, 2, 3, and 4, respectively. +R4 denotes
the current G2GNet architecture. The results indicate that
by adding more G2GMs into the model, the segmentation
accuracy for the different categories and metrics does not
manifest an obvious change. Applying the G2GM in residual
layer 4 can obtain a relatively better segmentation performance
than applying the other configurations. The results suggest that
increasing G2GMs do not capture more valuable information
for semantic segmentation. This is probably due to the fact
that in lower level convolutional stages, feature maps could
contain much noisy information and the semantic region
features are not sufficiently prominent. Therefore, we consider
inserting G2GM only in residual layer 4 as a best choice,
as adding more G2GMs will also add burden on computational
efficiency.

3) Robustness to Data Uncertainties: The issue of data
uncertainties during cross-modal remote sensing semantic
segmentation needs to be further highlighted in this study.
Actually, the data quality problem of the two benchmark
datasets, i.e., ISPRS Vaihingen 2-D and Potsdam 2-D, has
been issued in many previous works [10], [20]. Especially,
the DSM/nDSM of the two datasets contains so much error
height information. The DSM data used in this study are
generated by dense image matching, which could have missing
data in textureless areas. Such DSM data are also inaccurate in
vegetation areas and noisy at object boundaries. In the above
experiments, we have shown examples about the influence
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Fig. 11. Examples of semantic segmentation with G2GNet under data
uncertainties. (a) IRRG. (b) nDSM. (c) Label. (d) Prediction.

of low-quality measurements on segmentation performance
(see Figs. 8 and 9).

Concerns on data uncertainties are necessary when design-
ing CNN-based fusion models, as quality issues are common
in various types of Earth observation data [68]. It is not
expected to indistinguishably propagate both useful and excep-
tional features from additional data. In our G2GNet, this prob-
lem was circumvented with a two-phase fusion scheme. The
feature gatherer encodes and fuses feature maps of different
modalities into representative cross-modal global descriptors,
in which the less useful information is suppressed to a certain
degree. Then, the feature guider infers a channel-wise weight
vector for RGB feature refinement with the rich cross-modal
global descriptors, which further mitigates the influence of
noisy/exceptional features from the additional modality. There-
fore, the G2GNet is more robust to data uncertainties than the
previous methods. More examples can be seen in Fig. 11.
The boundary noise and error height information in nDSM
are rejected, while the sharp contours and complete structures
of objects in the RGB images are preserved.

V. CONCLUSION

This study presented a G2GNet for robust semantic seg-
mentation of RGB and auxiliary remote sensing data. The
center building block of this architecture is the G2GM, which
consists of two parts: a feature gatherer to self-adaptively
filter the exceptional and less useful features while aggre-
gating the informative ones from two input modalities, and
a feature guider to refine the RGB feature response with
the aggregated fused descriptor. Extensive experiments con-
ducted on two challenging benchmark datasets show that the
proposed G2GNet can achieve excellent segmentation results
on different datasets. Besides the qualitative and quantitative
comparison results, the ablation studies also verify that our
G2GM is capable of taking advantage of two complementary
modalities to boost the RGB segmentation performance. Fur-
ther experimental analysis also convincingly demonstrates that
the proposed G2GNet is extremely robust to data uncertainties.
The G2GNet can deliver high-quality labeling results even
under severe interruptions caused by data noises and anomalies
from auxiliary data.

In the future, we would like to exploit the effectiveness of
the proposed G2GNet to more types of Earth observation data
and extend our idea of CMF to other remote sensing tasks.
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