
Pattern Recognition 122 (2022) 108280 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Hyperspectral super-resolution via coupled tensor ring factorization 

Wei He 

a , Yong Chen 

b , ∗, Naoto Yokoya 

a , c , Chao Li a , Qibin Zhao 

a 

a RIKEN Center for Advanced Intelligence Project, RIKEN, Tokyo 103-0027, Japan 
b School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China 
c Department of Complexity of Science and Engineering, The University of Tokyo, Tokyo 113-8654, Japan 

a r t i c l e i n f o 

Article history: 

Received 24 February 2020 

Revised 15 March 2021 

Accepted 24 August 2021 

Available online 26 August 2021 

Keywords: 

Coupled tensor ring decomposition 

Super-resolution 

Hyperspectral 

Multispectral 

a b s t r a c t 

Hyperspectral super-resolution (HSR) fuses a low-resolution hyperspectral image (HSI) and a high- 

resolution multispectral image (MSI) to obtain a high-resolution HSI (HR-HSI). In this paper, we propose 

a new model called coupled tensor ring factorization (CTRF) for HSR. The proposed CTRF approach simul- 

taneously learns the tensor ring core tensors of the HR-HSI from a pair of HSI and MSI. The CTRF model 

can separately exploit the low-rank property of each class (Section 3.3), which has not been explored 

in previous coupled tensor models. Meanwhile, the model inherits the simple representation of coupled 

matrix/canonical polyadic factorization and flexible low-rank exploration of coupled Tucker factorization. 

We further introduce spectral nuclear norm regularization to explore the global spectral low-rank prop- 

erty. The experiments demonstrated the advantage of the proposed nuclear norm regularized CTRF model 

compared to previous matrix/tensor and deep learning methods. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Hyperspectral images (HSIs) have been widely used in remote 

ensing and computer vision applications because they can provide 

ich and varied spectral information [1–5] . However, owing to the 

imitations of imaging techniques used [6,7] , there is a trade-off

etween spatial and spectral resolution [8,9] . It is difficult to obtain 

igh-resolution HSIs (HR-HSI) using hyperspectral sensors. In addi- 

ion, the multispectral imaging sensors limit the spectral resolution 

o obtain high-resolution multispectral images (MSIs) [7,10] . There- 

ore, hyperspectral super-resolution (HSR) or hyperspectral and mul- 

ispectral image fusion , which fuses low-resolution HSIs and high- 

esolution MSIs to generate HR-HSIs [7,11] , is important in real- 

orld applications. 

HSR has been studied extensively since decades [12] . Ini- 

ially, HSR attempts to fuse an HSI and a panchromatic im- 

ge [13] , including multiresolution analysis (MRA) [12] and sparse 

epresentation-based methods [14] . However, these methods were 

imited to enhancing spatial details in practice [7] . Subsequently, 

 Bayesian framework was introduced to obtain a HR-HSI from the 

SI and MSI, i.e., maximum a posteriori (MAP) [15,16] and Bayesian 

parse representation [17] . Very recently, deep learning has also 

een introduced to fuse the HSI and MSI, and achieving remarkable 
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esults [18–22] . In [18] , an unsupervised sparse dirichlet-net was 

ntroduced for HSR. Following this approach, [23] proposed an un- 

upervised convolutional neural network (CNN) method with au- 

omatical selection of the camera spectral response of the MSI. In 

24] , an unsupervised adaptation learning method for HSR was in- 

roduced; a general image prior to the synthetic data was learned, 

nd then the learned image prior was adapted to the specific HR- 

SI under unknown degeneration. The authors of [19] realized a 

upervised learning method considering the spectral mode of an 

R-HSI and introduced an MSI/HSI fusion net. In [25] , a progres- 

ive zero-centric residual network was proposed for HSR; the net- 

ork employed spectral-spatial separable convolution with dense 

onnections. In [22] , the HSR was reduced to image denoising and 

 CNN image denoiser was introduced to perform the task. 

Unsupervised matrix/tensor-related methods have also been in- 

estigated. Over the past few years, numerous state-of-the-art HSR 

ethods have been developed using matrix factorization mod- 

ls [10,11,16,17,26–34] . The original HR-HSI is reshaped into the ma- 

rix, and the matrix is decomposed into basis and coefficient ma- 

rices. Using the coupled matrix factorization model, the spectral 

asis from the factorization of the HSI and the spatial coefficients 

rom the MSI can be learned simultaneously. Generally, reshaping 

 3-D HR-HSI to a 2-D matrix using an unfolding operator results 

n a loss of spatial correlation. Although several strategies, such as 

on-negative regularization of basis and coefficients [27,34] and 

otal variation regularization of coefficient matrix [29] , have been 

ntroduced to improve the HSR quality, the spatial-spectral corre- 
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Fig. 1. Tensor ring degradation model from HR-HSI to HSI and MSI, respectively. 
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ations have not been fully exploited. To extend the coupled ma- 

rix factorization model, a coupled tensor factorization model was 

ecently developed for HSR. Well-known methods include the cou- 

led canonical polyadic (CP) factorization model [6] and the cou- 

led Tucker factorization model [35,36] . As presented in [6] , the 

P factorization model assumes that low-rank properties of dif- 

erent dimensions are the same; however, this is not true in HR- 

SI [7,37] . The Tucker decomposition model introduces a 3-D core 

ensor, which is independent of the entire spatial and spectral 

egradation process. The existence of this core tensor increases 

he computation and estimation complexities. Several strategies, 

ncluding the L 1 norm [35] and L 2 norm [36] regularizations of 

he core tensor, and non-local processing [8,38,39] , have been pro- 

osed to improve accuracy. However, this improvement is limited. 

n summary, developing efficient and effective coupled tensor fac- 

orization models for HSR remains a challenge. In this study, we 

ropose a coupled tensor ring factorization (CTRF) model for HSR. 

ensor ring (TR) factorization [40] attempts to decompose a high- 

rder tensor into a series of 3-D tensors, called TR cores. As il- 

ustrated in [40,41] , TR factorization inherits the simple represen- 

ation of matrix/CP factorization and the flexible low-rank explo- 

ation of Tucker factorization. Furthermore, the TR factorization 

odel can exploit the low-rank properties of different classes (dis- 

ussed further in Section 3.3 ), which has never been explored in 

revious coupled tensor factorization models. The core idea of our 

TRF model is as follows. First, based on TR factorization, we de- 

eloped a degradation model from the HR-HSI to the HSI and MSI, 

s shown in Fig. 1 . The HR-HSI is degraded to an HSI by downsam-

ling the spatial core tensors. Meanwhile, the HR-HSI is degraded 

o the MSI by downsampling the spectral core tensor. Our CTRF 

odel reconstructs the HR-HSI from the coupled input of the HSI 

nd MSI. Subsequently, we build the objective function of the CTRF 

odel and iteratively update the two high-spatial-resolution core 

ensors and a high-spectral-resolution core tensor from the input 

SI and MSI. Finally, the HR-HSI is reconstructed from the opti- 

ized high-resolution core tensors via TR. An illustration of this 

s shown in Fig. 2 . The TR factorization model ignores the global 

ow-rank property of the original HR-HSI along the spectral dimen- 

ion, which has proven to be important in HSR [7,42] . Inspired by 

43] , we also discovered that the spectral low-rank property of the 

R-HSI is bounded by the rank of the third TR core along mode- 

 unfolding ( Theorem 2 ). This motivated us to introduce a nuclear 

orm regularized CTRF (NCTRF) model. The main contributions of 

his study are summarized as follows: 

• Based on TR factorization, we developed a degradation model 

from the HR-HSI to the MSI and HSI. We proposed a CTRF 
2 
model for HSR tasks. The nuclear norm regularization of the 

third TR core with mode-2 unfolding was introduced to further 

exploit the global spectral low-rank property of the HR-HSI. 
• We analyzed the superiority of the CTRF model for HSR and 

developed an efficient alternating iteration method for the pro- 

posed model. The experiments demonstrated the advantage of 

the CTRF model compared to the previous matrix/tensor and 

deep learning methods. 

Notations. 

We mainly adopt the notations from [44] in this paper. Ten- 

ors of order N ≥ 3 are denoted by boldface Euler script letters, 

.g., H ∈ R 

I 1 ×I 2 ×···×I N . Scalars are denoted by normal lowercase let- 

ers or uppercase letters, e.g., h, H ∈ R . H(i 1 , · · · , i N ) denotes the

lement of tensor H in position (i 1 , · · · , i N ) . Vectors are denoted 

y boldface lowercase letters, e.g., h ∈ R 

I . Matrices are denoted by 

oldface capital letters, e.g., H ∈ R 

I×J . Moreover, we employ two 

ypes of tensor unfolding (matricization) operations in this paper. 

he first mode- n unfolding [44] of tensor H ∈ R 

I 1 ×I 2 ×···×I N is de- 

oted by H (n ) ∈ R 

I n ×I 1 ···I n −1 I n +1 ···I N . The second mode- n unfolding of 

ensor H which is often used in TR operations [40] is denoted by 

 <n> ∈ R 

I n ×I n +1 ···I N I 1 ···I n −1 . H [ I 1 · · · I i , I i +1 · · · I N ] is the matricization by

egarding the first i dimensions as row and the last N − i dimen- 

ions as column. 

We define the folding operation for the first mode- n unfolding 

s fold n (·) , i.e., for a tensor H , we have fold n (H (n ) ) = H . In addi-

ion, the inner product of two tensors H , W with the same size 

 

I 1 ×I 2 ×···×I N is defined as 〈 H , W 〉 = 

∑ 

i 1 

∑ 

i 2 
· · · ∑ 

i N 
h i 1 i 2 ... i N w i 1 i 2 ... i N 

. 

urthermore, the Frobenius norm of H is defined by ‖ H ‖ F = 

 〈 H , H 〉 . In this paper, we adopt X ∈ R 

M×N×B , Y ∈ R 

m ×n ×B , Z ∈ 

 

M×N×b to represent the registered HR-HSI, HSI and MSI, respec- 

ively. Here, M > n and N > n represent the spatial size and B > b

tands for the spectral size. The objective of super-resolution is to 

stimate the HR-HSI by the fusion of HSI and MSI. 

. Related work 

In this section, we briefly discuss the related coupled ma- 

rix/tensor decomposition HSR methods, and the development of 

R factorization. 

.1. Coupled matrix factorization 

Various studies have proposed coupled matrix factorization 

ased methods [10,11,16,17,26,28–32,34] . Specifically, HR-HSI is 

haracterized by strong spectral correlation among different pixels 
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Fig. 2. Flowchart of our proposed CTRF model. The inputs are the MSI and HSI, and the output is the HR-HSI. 
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nd can be expressed by the following matrix factorization model 

 (3) = CD , (1) 

here X (3) ∈ R 

B ×MN represents the unfolding HR-HSI tensor X 

long the spectral dimension, and C ∈ R 

B ×L and D ∈ R 

L ×MN repre- 

ent the spectral basis and the corresponding coefficient matrix, 

espectively. In the factorization model (1) , the basis matrix can be 

llocated with different physical meanings with different regular- 

zations, that is, a low dimensional subspace with low-rank regu- 

arization [11,16,29] , and a spectral endmember matrix with non- 

egative regularization [10,32,34] . To explore the relationship be- 

ween the HR-HSI, HSI and MSI, the researchers usually assume 

hat there exist two linear degradation matrices P 0 ∈ R 

mn ×MN and 

 3 ∈ R 

b×B such that 

 (3) = C (DP 

� 
0 ) , Z (3) = (P 3 C ) D , (2)

here P 0 is the point spread function (PSF) [7] . The basic idea of

he coupled matrix factorization model for the HR-HSI method is 

o jointly factorize D and C from HSI and MSI, and reconstruct the 

R-HSI via equation (1) . 

However, the coupled matrix factorization based methods need 

o reshape the 2-D spatial image into a 1-D vector, ignoring the 

patial correlation of the image. Consequently, the total variation 

as introduced to enhance the spatial smoothness of the corre- 

ponding coefficient matrix D [29] . Unfortunately, the related to- 

al variation regularized methods introduced spatial oversmooth- 

ng, and the accuracy of the super-resolution result was limited [6] . 

.2. Coupled CP factorization 

The CP decomposition [44,45] is used to decompose tensor X 

nto the sum of multiple rank-1 tensors, which can be expressed 

s 

 = 

F ∑ 

f=1 

a f ◦ b f ◦ c f , (3) 

here ◦ denotes the outer product, and F is the rank of CP de- 

omposition. A = [ a 1 , . . . , a f ] , B = [ b 1 , . . . , b f ] , C = [ c 1 , . . . , c f ] are

alled the low-rank latent factors and CP decomposition can 

e represented as X = 
 A , B , C � . The coupled CP factorization 

odel [6] assumes that there exist three linear degradation ma- 

rices P 1 ∈ R 

m ×M , P 2 ∈ R 

n ×N , and P 3 ∈ R 

b×B such that 

 = 
 P 1 A , P 2 B , C � , Z = 
 A , B , P 3 C � (4) 

he advantage of the coupled CP factorization model is that it pre- 

erves the HR-HSI spatial structure. However, the HR-HSI has a 
3 
tronger spectral low-rank property compared to the spatial per- 

pective. In the coupled CP model, each latent factor among A , B , 

 is treated equally with a much larger rank F , resulting in insuffi- 

ient low-rank spectral exploration. 

.3. Coupled tucker factorization 

The Tucker decomposition [44,46] decomposes the tensor X as 

 = O ×1 A ×2 B ×3 C , (5) 

here O ∈ R 

R 1 ×R 2 ×R 3 denotes the core tensor, and A ∈ R 

M×R 1 , B ∈
 

N×R 2 , and C ∈ R 

B ×R 3 are the factors related to different dimen- 

ions. We adopted ×k to represent the mode- k tensor-matrix prod- 

ct [44] . 

The coupled Tucker factorization [35,36] also assumes that the 

egradation matrices P 1 ∈ R 

m ×M , P 2 ∈ R 

n ×N , and P 3 ∈ R 

b×B such

hat 

 = O ×1 (P 1 A ) ×2 (P 2 B ) ×3 C , 

 = O ×1 A ×2 B ×3 (P 3 C ) . 
(6) 

In the coupled Tucker factorization model, the factor size can be 

hosen based on the low-rank property of each dimension. How- 

ver, it introduces a core tensor O which is independent of the 

hole spatial and spectral degradation matrices. L 1 norm [35] and 

 2 norm [36] regularizers have been introduced to facilitate the 

dentification of O ; unfortunately, the related regularizations intro- 

uce additional turning parameters, and the estimation accuracy of 

ore tensor from the HSI and MSI remain problematic [35] . 

.4. Review of tensor ring factorization 

Based on tensor train factorization [47] , TR factorization was 

rst proposed by [40] and subsequently well studied from the al- 

orithm, application and theoretical analysis perspectives. The au- 

hors of [40,48] introduced sequential singular value decomposi- 

ion, alternating least squares (ALS) with adaptive rank, and block- 

ise ALS methods for the optimization of TR factorization. Owing 

o its well-balanced structure compared to tensor train factoriza- 

ion, TR factorization has also been directly applied to image com- 

letion [41] . To further improve image completion performance, TR 

ith nuclear norm regularization [43] and total variation [49] have 

een developed. In [50] , provable TR completion method was in- 

roduced and theoretically verified. In addition to image comple- 

ion, TR factorization has also been developed for applications such 

s hyperspectral image denoising [51] , neural network compres- 

ion [52] , generative model [53] and so on. More recently, a sim- 

lar method of low rank coupled TR completion was proposed in 



W. He, Y. Chen, N. Yokoya et al. Pattern Recognition 122 (2022) 108280 

[

n

f

w

t

[

s

H

e

3

p

t

T

3

e

{  

R  

t

H

w  

G
T

T

D

a

p

b

G
f

w

H  

w

a

m

f

b

P

a

c←H

T

c

3

m  

A

s  

a  

g

t

n

m

t

X
w

r

d  

t

Y
a

Z
B

O

f

3

w

c

a  

c

t

l

t

p

t

r

d

o

c

t

t

s

T

p

c

t

e

c

3

g

e

m  

g

r

t

m

c

T

c  

t

m

G

54] . A comparison between our work and that of [54] highlights a 

umber of differences as follows. First, the methods are designed 

or different tasks. Our proposed method is used for HSI fusion, 

hile the method in [54] is used for matrix completion. Second, 

he conditions of the two methods were different. The authors of 

54] assumed that the two coupled tensors shared partial core ten- 

ors; however, in our model, all three core tensors of the coupled 

SI and MSI are related via spatial and spectral downsampling op- 

rators. 

. Coupled tensor ring factorization 

In this section, we propose a CTRF model for the HSR. The 

roposed CTRF model has a more flexible rank selection strategy 

han CP decomposition, and a simpler representation compared to 

ucker decomposition. 

.1. Tensor ring decomposition 

TR decomposition represents tensor H by circular multilin- 

ar products over a sequence of third-order core tensors G := 

 G 

(1) , . . . , G 

(N) } , where G 

(n ) ∈ R 

R n ×I n ×R n +1 , n = 1 , 2 , · · · , N, R 1 =
 N+1 [40] . Here, R = [ R 1 , · · · , R N ] is the TR rank. Each element of

ensor H can be rewritten as 

(i 1 , · · · , i N ) = Tr (G 

(1) (i 1 ) · · · G 

(N) (i N )) , (7) 

here G 

(n ) (i n ) is the i n -th lateral slice matrix of the core tensor

 

(n ) . In this study, we adopt the notation H = �( G ) to represent 

R decomposition. Next, we introduce two important properties of 

R decomposition. 

efinition 1. (Multilinear product [48] .) Suppose G 

(n ) and G 

(n +1) 

re the two nearby cores of TR decomposition. The multilinear 

roduct of the two cores is G 

(n,n +1) ∈ R 

R n ×I n I n +1 ×R n +2 and denoted 

y 

 

(n,n +1) (( j l − 1) I n + i k ) = G 

(n ) (i k ) G 

(n +1) ( j l ) , (8) 

or i k = 1 , · · · , I n , j l = 1 , · · · , I n +1 . 

From Definition 1 , if the tensor H can be decomposed via (7) , 

e can immediately obtain the following 

 [ I 1 · · · I n , I n +1 · · · I N ] = G 

(1 , ··· ,n ) 
(2) 

× (G 

(n +1 , ··· ,N) 
< 2 > 

) � , (9)

here G 

(1 , ··· ,n ) 
(2) 

denotes the multilinear products of the first n cores 

nd the unfolding along mode-2, and G 

(n +1 , ··· ,N) 
< 2 > 

represents the 

ultilinear products of the last N − n cores and the second un- 

olding along mode-2. That is to say, the rank value R 1 × R n +1 is 

ounded by the rank of unfolding matrix H [ I 1 · · · I n , I n +1 · · · I N ] . 

roposition 1. (Circular dimensional permutation invari- 

nce [40] .) If 
← −H n ∈ R 

I n +1 ×···×I N ×I 1 ×···×I n is denoted as the cir- 

ularly shifting the dimensions of H by n , then we have 
 −
 n = �({ G 

(n +1) , . . . , G 

(N) , G 

(1) , . . . , G 

(n ) } ) 
With Proposition 1 , we can easily shift the middle cores of the 

R to the first position, and utilize Definition 1 to analyze each 

ore separately. 

.2. Coupled tensor ring factorization 

Based on TR factorization, we first developed the degradation 

odel from the HR-HSI to the HSI and MSI, as shown in Fig. 1 .

nalogous to the coupled CP and Tucker factorization, we also as- 

ume that the spatial degradation matrices P 1 ∈ R 

m ×M , P 2 ∈ R 

n ×N ,

nd spectral degradation matrix P 3 ∈ R 

b×B . P 1 and P 2 can be re-

arded as the separable operators of P 0 in the coupled matrix fac- 

orization model, as P 0 = P 1 � P 2 , with � representing the Kro- 

ecker product. As discussed in [55] , separable operators have 
4 
ore advantages in terms of optimization and calculation. Thus, 

he TR decomposition of HR-HSI can be represented as 

 = �( G 

(1) , G 

(2) , G 

(3) ) , (10) 

here G 

(1) ∈ R 

R 1 ×M×R 2 , G (2) ∈ R 

R 2 ×N×R 3 and G 

(3) ∈ R 

R 3 ×B ×R 1 rep- 

esents the core tensors related to the spatial, spatial and spectral 

imensions, respectively. R = [ R 1 , R 2 , R 3 ] represents the TR rank of

he HR-HSI. The HSI can be expressed as 

 = �( G 

(1) ×2 P 1 , G 

(2) ×2 P 2 , G 

(3) ) , (11) 

nd the MSI can be formulated as 

 = �( G 

(1) , G 

(2) , G 

(3) ×2 P 3 ) . (12) 

y combining (11) and (12) , we can obtain the CTRF model as 

min 

G (1) , G (2) , G (3) 

∥∥Y − �( G 

(1) ×2 P 1 , G 

(2) ×2 P 2 , G 

(3) ) 
∥∥2 

F 

+ 

∥∥Z − �( G 

(1) , G 

(2) , G 

(3) ×2 P 3 ) 
∥∥2 

F 
. (13) 

ur objective with the CTRF model is to reconstruct the HR-HSI 

rom the input HSI and MSI. 

.3. Motivation of CTRF for HSR 

In this section, we investigate (13) , and provide insights into 

hy the proposed CTRF model improves on the coupled Tucker de- 

omposition model in HSR. For HSIs, each spectral pixel, denoted 

s X (i, j, :) of size R 

B , represents the spectrum of one specific

lass. Typically, one scene of a HSI contains multiple classes, and 

here are several basis spectral signatures available to construct a 

ow-dimensional subspace for each class [56] . Tucker decomposi- 

ion usually reshapes HSIs along the spectral dimension, and ex- 

loits the spectral low-rank property globally. Conversely, TR fac- 

orization can learn the spectral core G 

(3) ∈ R 

R 3 ×B ×R 1 with R 3 rep- 

esenting the number of classes, and R 1 representing the subspace 

imension of each class. 

An experiment was constructed to demonstrate the advantages 

f the CTRF. We selected 50 pixels of class1 (grass) and 50 pixels of 

lass2 (road) from the WDC dataset ( Section 4.1 ), and constructed 

hese 100 pixels to a HR-HSI of size 10 × 10 × 191 . TR factoriza- 

ion could obtain a spectral core of size 2 × 191 × 2 from the con- 

tructed HR-HSI. Fig. 3 shows the spectral signatures extracted by 

R and Tucker decomposition. We applied singular value decom- 

osition (SVD) to each class and extracted the first two principal 

omponent vectors as reference signatures. As observed in Fig. 3 , 

he signatures obtained by TR are more similar to those of the ref- 

rences, indicating the advantage of TR factorization for HSI pro- 

essing. 

.4. NCTRF 

As analyzed in Section 3.3 , the obtained spectral core G 

(3) re- 

ards the subspace dimension of each class to be the same. How- 

ver, in a real case, the subspace dimensions of different classes 

ay differ. If we set a larger subspace dimension R 1 , we lose the

lobal low-rank property of the spectral core tensor. However, as 

eviewed in [7,10,30,57,58] , the HSI has a strong spectral correla- 

ion, indicating the low-rank property of HSI along the spectral di- 

ension. Inspired by this fact, we propose to regularize the third 

ore tensor G 

(3) along mode-2 as low rank, denoted as rank ( G 

(3) 
(2) 

) . 

he rank constraint is hard to optimize, and we introduced the nu- 

lear norm ‖ ·‖ ∗, the sum of the singular values of the matrix [59] ,

o regularize the low-rank property. Therefore, the proposed CTRF 

odel with nuclear norm regularization (NCTRF) is formulated as 

min 

 

( 1 ) , G ( 2 ) , G ( 3 ) 
‖ Y − �

(
G 

( 1 ) ×2 P 1 , G 

( 2 ) ×2 P 2 , G 

( 3 ) 
)‖ 

2 
F 

+ ‖ Z − �
(
G 

( 1 ) , G 

( 2 ) , G 

( 3 ) ×2 P 3 

)‖ 

2 
F + λ‖ G 

( 3 ) 
( 2 ) 

‖ ∗. 
(14) 
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Fig. 3. The signature comparison between TR factorization (TRF), Tucker decomposition and the reference. The reference indicates the signature extracted from each class 

via SVD. Class1-sigature1 indicates the first signature from class 1. 
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heorem 2. Suppose an N-th order tensor H ∈ R 

I 1 ×I 2 ×···×I N , we have 

he following property 

ank 
(
G 

( n ) 
( 2 ) 

)
≥ rank 

(
H ( n ) 

)
, (15) 

or n = 1 , · · · N. 

The proof Theorem 2 of can be referred to [43] . By Theorem 2 ,

e can immediately conclude that the spectral rank of HR-HSI X 

an be bounded by the rank of core tensor G 

(3) along mode-2. 

he regularization ‖ G 

(3) 
(2) 

‖ ∗ can exploit the global low-rank prop- 

rty along spectral dimension. 

emark 3.1. In this study, we only regularize the spectral low- 

ank property, and ignore the spatial low-rank property [43] , be- 

ause the low-rank property along the spectral dimension is much 

tronger than that of the spatial dimension [37,42] . The NCTRF 

odel (14) introduces an additional parameter λ. To reduce the 

omplexity of the proposed model, we fixed λ to a constant value 

n all experiments. 

.5. Optimization 

The objective function (14) is non-convex. Fortunately, for each 

eparable variable, the objective function is convex. We first intro- 

uce a latent variable G 

(0) = G 

(3) , and convert (14) to the following 

ugmented Lagrangian function 

( G 

(1) , G 

(2) , G 

(3) , G 

(0) , L , μ) = 

∥∥Y − �( G 

(1) ×2 P 1 , G 

(2) ×2 P 2 , G 

(3) ) 
∥∥2 

F 

+ 

∥∥Z − �( G 

(1) , G 

(2) , G 

(3) ×2 P 3 ) 
∥∥2 

F 
+ λ

∥∥G 

(0) 
(2) 

∥∥
∗

 < L , G 

(0) − G 

(3) > + 

μ

2 

∥∥G 

(0) − G 

(3) 
∥∥2 

F 
, (16) 

here L represents the Lagrangian multiplier and μ stands for 

he penalty parameter. Next, we adopt an alternating iterative 

ethod [60] to optimize (16) . By fixing other variables, and up- 

ating one variable for each iteration, the optimization of (16) can 

e split into four subproblems. 

Update G 

(1) : By fixing other variables, the update of G 

(1) can 

e formulated as 

 

(1) = min G (1) g( G 

(1) , G 

(2) , G 

(3) , G 

(0) , L , μ) . (17) 

y using two kinds of tensor unfolding as in Section 1 and 

efinition 1 , we can convert the optimization of (17) to the fol- 

owing problem 

 

(1) = arg min G (1) 

∥∥Y < 1 > − P 1 G 

(1) 
(2) 

A 1 

∥∥2 

F 
+ 

∥∥Z < 1 > − G 

(1) 
(2) 

B 1 

∥∥2 

F 
, 

(18) 

here Y < 1 > and Z < 1 > stand for the second unfolding of the tensors 

 , Z , respectively, A 1 = (( G 

(2) ×2 P 2 ) · G 

(3) ) � 
< 2 > and B 1 = ( G 

(2) ·
 G 

(3) ×2 P 3 )) 
� 
< 2 > 

. Optimization (18) is quadratic and its unique so- 

ution is equal to solve the general Sylvester matrix equation [16] 

 

� 
1 P 1 G 

(1) 
(2) 

A 1 A 

� 
1 + G 

(1) 
(2) 

B 1 B 

� 
1 = P 

� 
1 Y < 1 > A 

� 
1 + Z < 1 > B 

� 
1 . (19) 
5 
o avoid the large scale matrix inversion in the closed-form solu- 

ion of (19) , we adopt conjugate gradient (CG) [35] to solve (19) . 

Update G 

(2) and G 

(3) : We firstly fix other variables and update 

 

(2) . We adopt Proposition 1 to circularly shift the tensors Y and 

 , and convert the optimization of G 

(2) to the following optimiza- 

ion: 

min 

G (2) 

∥∥∥← −Y 1 − �( G 

(2) ×2 P 2 , G 

(3) , G 

(1) ×2 P 1 ) 

∥∥∥
2 

F 

+ 

∥∥∥← −Z 1 − �( G 

(2) , G 

(3) ×2 P 3 , G 

(1) ) 

∥∥∥
2 

F 
. (20) 

20) can be converted to the following matrix version optimization 

roblem 

 

(2) = arg min G (2) 

∥∥Y < 2 > − P 2 G 

(2) 
(2) 

A 2 

∥∥2 

F 
+ 

∥∥Z < 2 > − G 

(2) 
(2) 

B 2 

∥∥2 

F 
, 

(21) 

here Y < 2 > and Z < 2 > are equal to the mode-1 unfolding of the 

ensors 
← −Y 1 , 

← −Z 1 , respectively, A 2 = ( G 

(3) · ( G 

(1) ×2 P 1 )) 
� 
< 2 > 

and B 2 = 

( G 

(3) ×2 P 3 ) · G 

(1) ) � 
< 2 > . Thus, it can also be efficiently solved by 

he CG method. To update G 

(3) , we also adopt Proposition 1 to cir- 

ularly shift the tensors Y and Z , and obtain the following opti- 

ization 

min 

G (3) 

∥∥∥← −Y 2 − �( G 

(3) , G 

(1) ×2 P 1 , G 

(2) ×2 P 2 ) 

∥∥∥
2 

F 

+ 

∥∥∥← −Z 2 − �( G 

(3) ×2 P 3 , G 

(1) , G 

(2) ) 

∥∥∥
2 

F 

+ < L , G 

(0) − G 

(3) > + 

μ

2 

∥∥G 

(0) − G 

(3) 
∥∥2 

F 
, (22) 

hich can be solved by the CG method. 

Update G 

(0) : By fixing other variables, the optimization of G 

(0) 

an be obtained by solving the following problem 

in 

G (0) 
λ
∥∥G 

(0) 
(2) 

∥∥
∗ + 

μ

2 

∥∥G 

(0) 
(2) 

− G 

(3) 
(2) 

+ L (2) /μ
∥∥2 

F 
, (23) 

hich can be solved by the closed-form solution [59] 

 

(0) = fold 2 ( T λ
μ
(G 

(3) 
(2) 

− L (2) /μ)) . (24) 

ere, T λ
μ

is the singular value thresholding (SVT) operator. 

Update L and μ: Finally, we adopt the strategy in [60] to up- 

ate L and μ

 = L + μ( G 

(0) − G 

(3) ) , μ = min (μ1 , ρμ) , (25) 

here μ1 and ρ > 1 denotes constant values. In summary, 

he optimization of the proposed NCTRF model is presented in 

lgorithm 1 . 

. Experiments 

In this section, we present the experimental results of different 

ethods, followed by the parameter analysis, convergence analy- 

is, computational time, and comparison with deep learning based 

ethods. The experiments were programmed in MATLAB R2018b 

n a laptop with a Core i7-8750H CPU and 32GB memory. 
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Algorithm 1 Optimization of NCTRF. 

Require: HSI Y , MSI Z , rank R . 

1: λ = 0 . 001 , ρ = 1 . 5 , μ = 10 −4 , μ1 = 10 6 

2: for i = 1 , 2 , 3 , · · · iter do 

3: Update the TR cores G using (17), (20), (22), and (23). 

4: Update L and μ via (25). 

5: end for 

6: return HR-HSI X = φ( G ) ; 

Table 1 

The size of the image used for HSR experiments. 

Image name HR-HSI HSI MSI 

WDC 256 × 256 ×90 64 × 64 ×90 256 × 256 ×4 

PaC 200 × 200 ×93 50 × 50 ×93 200 × 200 ×4 

Indian 144 × 144 ×100 16 × 16 ×100 144 × 144 ×4 

CAVE 512 × 512 ×31 16 × 16 ×31 512 × 512 ×3 

Real 512 × 512 ×71 32 × 32 ×71 512 × 512 ×3 
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Table 2 

Quantitative comparison of different algorithms under various 

noise levels. The results are the average of the three datasets, and 

the best results are in bold. ↑ stands for the larger, the better, and 

↓ is the inverse. 

SNR = 20 

Method PSNR ↑ RMSE ↓ ERGAS ↓ SAM ↓ SSIM ↑ 
CNMF 26.73 12.86 4.38 8.53 0.752 

FUSE 30.43 8.23 2.94 5.79 0.870 

HySure 27.56 11.72 4.51 9.64 0.727 

STEREO 30.31 8.20 3.06 7.35 0.846 

CSTF 31.48 7.16 2.76 6.17 0.865 

NLSTF 25.47 14.36 5.42 12.99 0.688 

CTRF 31.94 6.89 2.56 5.76 0.877 

NCTRF 31.98 6.84 2.55 5.74 0.877 

SNR = 30 

CNMF 29.15 9.97 3.56 4.85 0.885 

FUSE 35.63 4.42 1.67 3.30 0.956 

HySure 34.98 4.74 1.84 3.69 0.945 

STEREO 35.53 4.68 1.85 4.46 0.942 

CSTF 37.93 3.47 1.32 3.21 0.963 

NLSTF 34.84 5.03 1.82 4.62 0.940 

CTRF 38.15 3.46 1.31 3.27 0.965 

NCTRF 38.16 3.46 1.31 3.27 0.966 

SNR = 40 

CNMF 29.31 9.66 3.60 4.95 0.905 

FUSE 37.61 3.50 1.40 2.48 0.980 

HySure 37.41 3.59 1.43 2.56 0.979 

STEREO 38.72 3.44 1.25 3.32 0.968 

CSTF 40.69 2.58 1.02 2.45 0.981 

NLSTF 41.99 2.34 0.85 2.22 0.985 

CTRF 41.35 2.57 1.00 2.47 0.985 

NCTRF 41.54 2.54 0.98 2.46 0.985 
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.1. Experimental database 

To validate the performance of our proposed CTRF method for 

emote sensing HSR, we conducted the experiments on three HR- 

SI datasets, including the Washington DC Mall (WDC) 1 , Pavia 

enter (PaC) 2 , and Indian Pines 3 . These three datasets are widely 

sed in simulation-based evaluation of HSR [6,35] . The sizes of the 

R-HSI, and simulated HSIs and MSIs are shown in Table 1 . We 

hose the PSF with an average kernel (size 8) to generate the spa- 

ial degradation matrices. When we simulated the HSI and MSI 

rom the HR-HSI, Gaussian noise was added to the HSI and MSI, 

nd the signal-to-noise (SNR) ratio changed from 20dB, 30dB to 

0dB. All HR-HSIs were scaled to [0, 255]. 

.2. Comparison methods and evaluation measures 

We chose the following methods for comparison: coupled 

on-negative matrix factorization (CNMF) [34] 4 , FUSE [61] 5 , 

ySure [29] 6 , coupled CP factorization (STEREO) [6] 7 , coupled 

ucker factorization (CSTF) [35] 8 , and non-local sparse tensor fac- 

orization (NLSTF) [8] . Related implementation codes were down- 

oaded from the authors’ personal website, and the parameters 

ere manually tuned to the best. Our proposed methods are de- 

oted as CTRF and NCTRF, respectively. To evaluate the perfor- 

ance of the proposed method, five quantitative indices were uti- 

ized in our study: the peak signal-to-noise ratio (PSNR), root mean 

quare error (RMSE), relative dimensional global error in synthe- 

is (ERGAS) [62] , spectral angle mapper (SAM) [63] , and structure 

imilarity (SSIM) [64] . Smaller RMSE, ERGAS, and SAM values in- 

icate better super-resolution results. Conversely, the larger PSNR 

nd SSIM values illustrate better quality. 

.3. Experimental results on remote sensing 

Quantitative comparison. For each noise level, we calculated 

he evaluation values of the three datasets and then averaged 

hem, as shown in Table 2 . From the table, it can be observed that

he proposed CTRF and NCTRF methods displayed more advantages 
1 https://engineering.purdue.edu/ ∼biehl/MultiSpec/hyperspectral 
2 http://www.ehu.eus/ccwintco/index.php/ 
3 https://engineering.purdue.edu/ ∼biehl/MultiSpec/ 
4 http://naotoyokoya.com/Download.html 
5 https://github.com/qw245/BlindFuse 
6 https://github.com/alfaiate 
7 https://sites.google.com/site/harikanats/ 
8 https://sites.google.com/view/renweidian/ 
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f

I

t

4

d

6 
hen the SNR was 20dB and 30dB. In the low-noise case, NLSTF 

chieved the best accuracy. This is because non-local based meth- 

ds are more effective than global based methods. However, an in- 

rease in noise leads to several challenges to the group matching 

odel, resulting in a poorer performance for NLSTF in noisy cases. 

rom the comparison, the CNMF and HySure models performed the 

orst, demonstrating the advantage of the coupled tensor model. 

urthermore, CTRF and NCTRF achieved better results than those of 

he STEREO and CSTF, demonstrating the advantage of TR decom- 

osition compared to that of Tucker and CP. Finally, the results of 

CTRF were slightly better than those of CTRF. This phenomenon 

emonstrates the advantage of nuclear norm regularization for the 

hird core tensor. As the noise level increases, the gap between 

TRF and NCTRF decreases, because we usually choose a smaller 

R rank R = [ R 1 , R 2 , R 3 ] in the noisy model. In this case, the ef-

ciency of nuclear norm regularization also decreases, since the 

alue R 1 × R 3 is small enough to explore the global spectral low- 

ank property of the HR-HSI. 

Visual comparison. To further compare the differences be- 

ween different HSR methods, we chose one band from the WDC 

ataset and one band from the Indian Pines dataset, to illustrate 

he related HSI, ground truth HR-HSI, and different HSR results in 

he case of a noise level of SNR = 20 in Fig. 4 . We also show the

elated difference images between the HSR results and the ground 

ruth. From the figure, it can be seen that the proposed CTRF and 

CTRF methods achieve the best visual results. The CSTF can also 

chieve outstanding results. The STEREO and FUSE methods per- 

orm better in the case of the WDC dataset, but worse with the 

ndian Pines dataset. The CNMF, HySure, and NLSTF methods fail 

o reconstruct the images. 

.4. Comparison with deep learning 

Recently, deep learning based methods have also been intro- 

uced for the fusion of the HSI and MSI [18–21,23] . We used the 

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral
http://www.ehu.eus/ccwintco/index.php/
https://engineering.purdue.edu/~biehl/MultiSpec/
http://naotoyokoya.com/Download.html
https://github.com/qw245/BlindFuse
https://github.com/alfaiate
https://sites.google.com/site/harikanats/
https://sites.google.com/view/renweidian/
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Fig. 4. HSR results of different methods with the WDC and Indian dataset. The noise level corresponds to SNR = 20 . The first row illustrates the band 13 images from the 

WDC dataset; the second row shows the related difference images between the HSR results and the ground truth HR-HSI. The third row illustrates the band 49 images from 

the Indian dataset, and the last row shows the related difference images. 

Table 3 

Quantitative comparison of different algorithms on CAVE images. 

Indices Method 1 2 3 4 5 6 7 8 9 10 11 12 Averange 

PSNR CNMF 41.71 37.28 29.13 31.17 38.40 37.85 39.60 45.35 40.46 36.86 35.81 37.70 37.61 

FUSE 40.84 36.63 29.84 31.51 38.08 36.06 40.29 40.89 38.91 36.98 34.93 39.24 37.02 

HySure 40.09 33.33 30.41 29.71 37.78 38.25 40.65 38.19 41.09 37.14 36.48 36.75 36.66 

STEREO 37.18 31.41 28.12 28.87 39.92 34.06 40.18 37.16 39.11 31.30 36.53 38.83 35.22 

CSTF 43.86 33.20 35.20 32.19 41.99 40.23 44.30 45.04 45.64 37.57 42.20 44.52 40.50 

NLSTF 43.75 41.14 34.63 33.36 39.37 38.33 43.83 41.90 44.13 37.54 41.41 44.03 40.29 

uSDN 36.33 33.29 29.07 29.14 35.09 36.23 44.29 38.12 36.44 37.06 34.86 39.42 35.78 

UDL 44.69 41.86 36.02 33.99 41.94 40.24 43.86 46.51 44.68 38.13 44.24 46.21 41.86 

MHF-net 46.23 38.15 38.08 33.29 45.19 41.16 46.58 46.87 47.91 43.84 44.00 44.60 42.99 

CTRF 44.40 38.93 37.02 32.00 43.84 41.70 45.57 45.46 46.12 40.37 43.50 44.46 41.95 

NCTRF 44.42 38.56 37.11 32.10 44.01 41.64 45.89 45.61 45.96 40.48 43.78 44.68 42.02 

RMSE CNMF 2.95 3.88 9.86 7.75 3.47 3.96 2.94 1.55 2.65 4.36 4.29 3.38 4.25 

FUSE 3.12 4.50 10.80 7.48 3.63 4.94 3.31 2.48 4.08 4.38 5.49 3.01 4.77 

HySure 4.44 7.20 9.39 9.88 3.79 4.38 3.33 3.88 3.72 4.69 4.37 4.13 5.27 

STEREO 6.09 8.58 11.32 11.14 2.92 5.71 3.59 4.37 3.86 7.36 4.07 3.29 6.02 

CSTF 3.62 7.51 6.54 6.97 2.38 3.49 2.27 1.79 1.91 5.08 2.60 1.77 3.83 

NLSTF 3.85 3.66 8.44 6.26 3.21 4.58 2.78 2.89 2.58 4.69 3.32 2.29 4.05 

uSDN 5.11 6.00 9.82 9.24 4.55 4.59 1.69 3.35 3.96 3.86 4.78 2.85 4.98 

UDL 1.94 3.58 5.46 5.45 2.34 3.48 1.90 1.40 1.93 3.80 1.92 1.36 2.88 

MHF-net 1.80 3.43 3.71 6.79 1.53 2.85 1.65 1.37 1.54 2.85 1.88 2.20 2.63 

CTRF 2.27 3.58 4.85 6.74 1.92 2.90 1.83 1.65 1.76 3.35 2.14 1.78 2.90 

NCTRF 2.25 3.86 4.83 6.66 1.90 2.81 1.70 1.64 1.79 3.27 2.02 1.71 2.87 

SSIM CNMF 0.975 0.969 0.888 0.962 0.987 0.968 0.986 0.984 0.985 0.974 0.957 0.983 0.968 

FUSE 0.944 0.946 0.812 0.958 0.983 0.947 0.983 0.959 0.971 0.965 0.922 0.971 0.947 

HySure 0.941 0.888 0.834 0.917 0.985 0.954 0.979 0.920 0.934 0.964 0.939 0.968 0.935 

STEREO 0.869 0.792 0.729 0.834 0.971 0.894 0.950 0.907 0.955 0.881 0.920 0.955 0.888 

CSTF 0.955 0.889 0.918 0.934 0.987 0.968 0.984 0.981 0.990 0.955 0.970 0.986 0.960 

NLSTF 0.969 0.970 0.946 0.969 0.986 0.976 0.988 0.983 0.992 0.976 0.961 0.989 0.975 

uSDN 0.915 0.906 0.805 0.824 0.977 0.956 0.964 0.887 0.934 0.980 0.907 0.985 0.920 

UDL 0.971 0.982 0.943 0.962 0.984 0.972 0.970 0.974 0.972 0.978 0.980 0.992 0.973 

MHF-net 0.987 0.979 0.983 0.976 0.993 0.983 0.994 0.985 0.995 0.991 0.992 0.991 0.988 

CTRF 0.969 0.955 0.949 0.962 0.991 0.981 0.992 0.983 0.993 0.980 0.984 0.991 0.977 

NCTRF 0.969 0.949 0.949 0.961 0.991 0.981 0.992 0.983 0.991 0.980 0.985 0.991 0.977 
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nsupervised uSDN [18] 9 , the unsupervised deep learning (UDL) 

ethod introduced in [23] , and the supervised MHF-net [19] 10 as 

tate-of-the-art deep learning methods for comparison with the 

roposed methods. With the same setting as in [19] , we adopted 

he CAVE dataset 11 for the experiments, using 20 CAVE images for 

he training and the remaining 12 CAVE images for the test. The 

patial downsampling was the same as that used in [19,23] , and 

he spectral downsampling matrix was the spectral response ma- 

rix of the Nikon D700 [23] . The sizes of the simulated CAVE im-

ges are listed in Table 1 . Table 3 shows comparison between the 
9 https://github.com/aicip/uSDN 

10 https://github.com/XieQi2015/MHF-net 
11 http://www1.cs.columbia.edu/CAVE/databases/ 

r

l

7 
roposed method and two deep learning based methods. From the 

able, it can be observed that the proposed NCTRF method achieves 

etter quantitative evaluation results than those of uSDN and UDL 

ethod. The supervised MHF-net achieved better results than CTRF 

nd NCTRF. However, our proposed method dose not require addi- 

ional samples for training compared to the MHF-net. Fig. 5 shows 

he visual results of different HSR methods, with related differ- 

nce images between the HSR results and the ground truth HR-HSI 

AVE images. From the difference images achieved by the different 

ethods, it can be observed that the proposed method achieved 

esults comparable to those of state-of-the-art unsupervised deep 

earning methods. 

https://github.com/aicip/uSDN
https://github.com/XieQi2015/MHF-net
http://www1.cs.columbia.edu/CAVE/databases/
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Fig. 5. HSR results of different methods with CAVE dataset at wavelength 460, 540 and 620 nm. The second and forth rows illustrate the difference images between HSR 

results and the ground-truth HR-HSI. 

Fig. 6. HSR results of different methods with real images at wavelength 500 nm. 

Fig. 7. The changes of RMSE value with different TR rank [ R 1 , R 2 , R 1 ]. The noise level is the case of SNR = 40. 
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Fig. 8. The changes of RMSE value with the iterations on the WDC dataset. 

Table 4 

Computational time (s) of different methods with different dataset. 

Data CNMF FUSE HySure STEREO CSTF NLSTF CTRF NCTRF 

WDC 15.8 3.9 50.2 5.3 15.1 20.7 12.0 17.0 

Pavia 15.4 3.8 46.1 5.4 14.8 21.9 11.7 17.1 

Indian 3.1 1.6 18.6 0.9 3.6 13.2 2.2 3.3 

c

F

w

c
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t
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.5. Experimental results on real dataset 

To further improve the effectiveness of the proposed method, 

e present HSR results on real images [23] . As illustrated in [23] ,

he HSI was captured using an NH-7 (EBA Japan) hyperspectral 

amera, and the MSI was captured using a Nikon D5. The sizes of 

he real HSI and MSI are shown in Table 1 . Fig. 6 (a) and (b) show

he HSI and MSI images, respectively. Fig. 6 (c) shows a reference 

mage at 500 nm. It can be seen that the UDL method and the pro-

osed CTRF and NCTRF achieve comparable results, indicating the 

fficiency of the proposed methods to the real applications. 

.6. Discussion 

Parameter analysis. TR rank R = [ R 1 , R 2 , R 3 ] is the most im-

ortant parameter in the proposed CTRF and NCTRF methods. 

he adaptive selection ofTR rank is still a key problem. From 

heorem 2 , the values R 1 × R 2 , R 2 × R 3 , and R 3 × R 1 are bounded

y rank (X < 1 > ) , rank (X < 2 > ) and rank (X < 3 > ) , respectively. To sim-

lify the complexity of the parameter analysis, we chose R 1 = R 3 
o maintain the consistency of the spatial TR core tensors. Typ- 

cally, an HSI X has a larger spatial rank, and a smaller spec- 

ral rank. Therefore, we changed R 1 from the range [2 , 7] ; while

hanging R 2 from the range [50 , 300] . Fig. 7 shows the changes

n the RMSE values with different TR ranks [ R 1 , R 2 , R 1 ]. Typically,

hen the rank R 1 is larger, the performance of CTRF degrades 

ignificantly. This is mainly because the subspace dimensions of 

ome classes may be smaller than R 1 . However, with the nuclear 

orm constraint of the third core tensor, NCTRF can obtain smaller 

MSE values, compared to those of CTRF. We choose TR rank to 

e [3 , 150 , 3] , [4 , 200 , 4] , and[5 , 250 , 5] for SNR = 20 , 30 , 40 , respec-

ively. 
8 
Convergence. We conducted experiments to demonstrate the 

onvergence behavior of the proposed CTRF and NCTRF methods. 

ig. 8 shows the changes in RMSE obtained by CTRF and NCTRF, 

ith an increase in the iteration number on the WDC dataset. It 

an be seen that, with increasing iterations, the RMSE values ob- 

ained by CTRF and NCTRF decreased to stable values, indicating 

he convergence of the proposed methods. 

Computational time. Table 4 presents the computational times 

f the different methods with different datasets. From the table, 

t can be seen that the proposed methods are competitive when 

ompared to the other traditional methods. 



W. He, Y. Chen, N. Yokoya et al. Pattern Recognition 122 (2022) 108280 

5

m

t

t

m

t

c

v

h

p

w

D

c

i

A

P

t

N

6

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[

[  

[  

[  

[  

[  

[

[  

[  

 

[  

[  

[

[  

[  

[

[  

[  

[  

 

[  

[  

[

[  

[

[  

[  

[  
. Conclusions 

In this paper, we propose a CTRF model for HSR. The proposed 

odel offers the advantages of the coupled matrix and Tucker fac- 

orization, and is shown to better exploit the low-rank proper- 

ies of different HSI classes. Furthermore, we propose the NCTRF 

odel by utilizing nuclear norm regularization of the third core 

ensor to exploit the global spectral low-rank properties of the re- 

overed HR-HSI. An efficient alternating iteration method was de- 

eloped to optimize the CTRF and NCTRF. Numerous experiments 

ave demonstrated the advantages of the proposed methods com- 

ared to other tensor and deep learning methods. In future work, 

e plan to develop an automatic method to choose the TR rank . 
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