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Hyperspectral Image Denoising With Total
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Abstract— Hyperspectral images (HSIs) are normally cor-
rupted by a mixture of various noise types, which degrades
the quality of the acquired image and limits the subsequent
application. In this article, we propose a novel denoising method
for the HSI restoration task by combining nonlocal low-rank
tensor decomposition and total variation regularization, which
we refer to as TV-NLRTD. To simultaneously capture the
nonlocal similarity and high spectral correlation, the HSI is
first segmented into overlapping 3-D cubes that are grouped into
several clusters by the k-means++ algorithm and exploited by
low-rank tensor approximation. Spatial–spectral total variation
(SSTV) regularization is then investigated to restore the clean HSI
from the denoised overlapping cubes. Meanwhile, the �1-norm
facilitates the separation of the clean nonlocal low-rank tensor
groups and the sparse noise. The proposed TV-NLRTD method
is optimized by employing the efficient alternating direction
method of multipliers (ADMM) algorithm. The experimental
results obtained with both simulated and real hyperspectral
data sets confirm the validity and superiority of the proposed
method compared with the current state-of-the-art HSI denoising
algorithms.

Index Terms— Denoising, Hyperspectral image (HSI), nonlocal
low-rank, spatial–spectral total variation (SSTV), tensor decom-
position.

I. INTRODUCTION

A HYPERSPECTRAL image (HSI) is a high-dimensional
data cube containing an array of 2-D gray images over

hundreds of adjacent spectral bands. The abundant spectral
information of HSIs is used in many applications, such as food
safety [1], precision agriculture [2], mineral detection [3], and
military reconnaissance [4]. Unfortunately, HSIs are normally
corrupted by several types of noise, such as the Gaussian
noise, stripes, dead pixels, and impulse noise. The generation
of noise is derived from many aspects, including sensor noise
(including photon (shot) noise, dark noise, and readout noise)
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and the atmospheric effect [7], [27]. The existence of noise not
only degrades the image quality but also restricts the precision
of the subsequent applications. In fact, the denoising results
directly determine the performance of the related applications.
Therefore, denoising of hyperspectral remote sensing images
has important academic significance and application value.

Over the past few years, HSI denoising has attracted the
attention of many scholars. From the perspective of the spatial
domain, an HSI is equivalent to a gray image with many
overlapping bands. Therefore, the most intuitive approach is
to regard each band of the HSI as an independent gray image.
Thus, the traditional gray image denoising methods, such as
wavelet-based methods [6], the K-SVD algorithm [8], block-
matching 3-D (BM3D) filtering [9], and total variation (TV)
regularization [49], can be adopted to restore HSIs. However,
such methods neglect the correlations between the different
spectral bands, resulting in a poor performance in many cases.
To take full advantage of the strong spectral correlation in
HSIs, several spectral domain-based methods have been pro-
posed. By assuming that the high-dimensional HSI underlies a
low-dimensional intrinsic space, principal component analysis
(PCA) [57] transforms the HSI into a lower dimensional linear
space by orthogonal projection, and the restored HSI can then
be obtained via inverse transformation of the first few principal
component images that are regarded as containing most of
the information. In [49], by adopting the strong assumption
of piecewise smoothness, a cubic TV (CTV) model for HSI
denoising was proposed. By considering the HSI as a 3-D
tensor with multilinear algebra tools, the multidimensional
Wiener filter (MWF) method utilizes the Wiener filtering
to denoise the HSI after performing Tucker decomposition
on the hyperspectral data [10], [11], [37], [38], [48], [55].
Nevertheless, these methods only focus on the additive white
Gaussian noise, resulting in a less competitive performance
for other types of mixed noise.

In reality, the actual noise in HSIs is much more complex
than the Gaussian noise. In addition to the Gaussian noise,
HSIs are usually corrupted by stripes, dead pixels or lines,
impulse noise, and so on [27]. Inspiringly, many researchers
have attempted to remove the mixed noise in HSIs [27],
[31], [51]. Motivated by the robust PCA (RPCA) method
[17], Zhang et al. [27] proposed the low-rank matrix recovery
(LRMR) model by exploring the low-rank property of the
2-D form of hyperspectral imagery and considered the non-
Gaussian noise as a sparse part. Although the LRMR method
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has achieved competitive performances, it only utilizes the
spectral information and causes some spatial distortion in the
case of heavy noise. To further combine the spatial structure
and spectral information of HSIs, He et al. [31] incorporated
band-by-band TV regularization into the LRMR framework to
capture the piecewise smoothness of the clean image from the
spatial perspective, thus enhancing the denoising performance.
However, such a bandwise TV regularization ignores the piece-
wise smoothness in the spectral domain, resulting in exces-
sive smoothing of the restored image [13], [15], [24], [30].
Although some encouraging progress has been made, devel-
oping a denoising model for mixed noise by mining both
spatial and spectral information has been less successful and
still requires further research.

Nonlocal self-similarity has shown great potential in natural
image denoising [14], [16], [19]. It characterizes the “homolo-
gous aggregation of microstructures” [12], which can be used
to preserve edges and details. Consequently, the nonlocal self-
similarity-based method has been successfully applied to HSIs
for the Gaussian denoising. Xue and Zhao [59] combined rank-
1 tensor decomposition with nonlocal low-rank regularization
(NLR-R1TD) for HSI denoising to avoid the rank uncer-
tainty. By integrating the multidimensional nonlocal means
filter algorithm with a variational framework, Li et al. [43]
proposed multidimensional nonlocal TV (MNLTV) for HSI
denoising. Peng et al. [47] constructed a nonlocal tensor
dictionary learning (TDL) model by explicitly considering the
spatial and spectral self-similarity of multispectral imagery
with a group-block-sparsity constraint. Xie et al. [50] provided
a new multispectral image denoising model (ITSReg) with
a designed sparsity measure under Tucker and canonical
polyadic (CP) decomposition for tensors formed by nonlocal
similar patches. In [58], an HSI denoising algorithm based on
nonnegative Tucker decomposition was proposed to exploit
the nonlocal similarity across the HSI cube. Despite their
considerable advantages, these nonlocal-based methods ignore
the problem of the complicated noise in HSIs, leading to
unsatisfactory restoration results in real-world situations under
a heavy mixed-noise scenario.

In this article, we build a bridge between nonlocal similarity
and mixed-noise removal and propose the spatial–spectral
total-variation-regularized nonlocal low-rank tensor decompo-
sition (TV-NLRTD) method for HSI denoising. We consider
that HSIs are usually corrupted by a combination of various
types of noise, including the Gaussian noise, plus impulse
noise, stripes, and deadlines, which are modeled as the sparse
noise [25], [27], [28], [41], [45]. Fig. 1 shows the overall
framework of the proposed model. As with our previous model
[27], the noisy HSI is divided into the clean image, the
Gaussian noise, and sparse noise. However, differing from the
previous work, where it was assumed that the clean HSI should
underlie a low-dimensional subspace, we exploit the nonlocal
similarity of the clean HSI. To boost the performance, we also
adopt the assumption that the restored HSI from the recovered
nonlocal patches demonstrates a piecewise smooth structure.
In summary, the main contributions of this article include the
following three aspects.

Fig. 1. Flowchart of the proposed TV-NLRTD method.

1) A nonlocal low-rank tensor decomposition model for
HSI mixed-noise removal is proposed. Specifically, over-
lapping 3-D cubes extracted from the observed HSI
are grouped into several clusters by the k-means++
algorithm [42]. Each cluster contains similar cubes,
and hence, the nonlocal similarity between the spatial–
spectral cubes is captured to exploit the structure of the
clean image. The Tucker decomposition is then utilized
to separate the clean cube from each clustered group,
thus suppressing the mixed noise.

2) To further remove the mixed noise, spatial–spectral total
variation (SSTV) regularization is integrated into the
nonlocal low-rank tensor decomposition framework by
exploiting the local piecewise smoothness of the clean
image.

3) The alternating direction method of multipliers
(ADMM) algorithm is employed to solve the proposed
TV-NLRTD method. Both quantitative and visual
evaluations of the experimental results obtained with
simulated and real hyperspectral data sets confirm that
the proposed method achieves better denoising results
by simultaneously removing the mixed noise while
preserving the image details.

The rest of this article is organized as follows. Some tensor-
related notations and preliminaries are presented in Section II.
Section III introduces the details of the proposed TV-NLRTD
method, followed by the optimization solution of the ADMM
algorithm. In Section IV, the results obtained in experiments
undertaken with two simulated data sets and two real hyper-
spectral data sets are described to show the validity and
practicability of the proposed method. Finally, Section V gives
our conclusion and provides a discussion on future research.

II. RELATED WORK

A. Notation and Preliminaries

In this article, we adopt the notation from [5] and denote a
tensor as a Euler script letter, e.g., A. A matrix is represented
as a capitalized bold letter, e.g., A. In addition, we denote
variables as italic roman letters, e.g., a. For an N-mode tensor
A ∈ R

I1×···In×···IN , we denote its elements as ai1···in ···iN , where
i1 ≤ in ≤ iN . The mode-n flattening of a tensor means to take
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the mode-n vectors of A as the columns and then convert this
into a matrix, e.g., A(n) ∈ R

In×(I1···In−1 In+1···IN ).
The mode-n product of tensor A ∈ R

I1×···In×···IN by matrix
B ∈ R

JN ×IN is denoted by C = A ×n B, where C ∈
R

I1×···Jn×···IN is an N th order tensor, and its entries are com-
puted by ci1···in−1 jn in+1···iN = �

in ai1···in−1in in+1···iN b jn jn . The
n-rank of A, denoted as rn , can be seen as the dimension of the
space formed by the tensor on each mode. The Frobenius norm
of a tensor A is defined as �A�F = (

�
i1,...,iN |ai1,...,iN |2)1/2,

and the �1-norm is calculated as�A�1 =� i1,...,iN |ai1,...,iN |.

B. Nonlocal Similarity Patch Matching

The nonlocal similarity of an HSI describes the fact that
for each 3-D block of the HSI, there are many similar blocks
in the nearby space. Typically, to exploit the self-similarity of
the pattern structure in the image, the HSI is first segmented
into overlapping 3-D blocks [47], and then, the nonlocal patch
sets can be constructed by the k-means++ [42] clustering
algorithm. In this way, the nonlocal procedure simultaneously
exploits the spectral and spatial low-rank property of the
HSI. For an n-order tensor, it can be decomposed into n
factor matrices and one core tensor by the Tucker decom-
position. The factor matrix on each mode is called the base
matrix of the tensor or the principal component. Consequently,
the Tucker decomposition can also be considered as high-order
PCA [33]–[36] and can be used to depict the low-rank tensor
approximation. The equation for the Tucker decomposition is
formulated as

X = G ×1 U1 ×2 U2 × · · · ×N UN (1)

where G is the core tensor controlling the interaction between
the factor matrices U1 ∈ R

I1×r1 , U2 ∈ R
I2×r2 , . . . , UN ∈

R
IN ×rN .
For the complex mixed noise in HSIs, different types of

noise have very different properties, e.g., stripe noise is a
special kind of noise with a certain periodicity, directionality,
and distribution in the image [23]. This means that the statis-
tical distribution of sparse noise is totally different from the
Gaussian distribution of the Gaussian noise. However, the tra-
ditional nonlocal similar patch grouping methods are based on
the Gaussian distribution assumption and adopt the �2-norm
to characterize the patch similarity. These methods cannot be
applied to the complex non-Gaussian noise, inspiring us to
model the sparse noise and utilize more prior information for
the restoration of the clean HSI.

C. TV Regularization

HSIs also demonstrate a strong piecewise smooth structure,
and the related TV methods have been widely used in HSI
processing [18], [20], [22], [23], [60]. Fig. 2 depicts the
piecewise smooth property from both the spatial and spectral
modes of HSIs. The TV norms can be divided into isotropic
TV norms and anisotropic TV norms [44]. Although these two
kinds of TV norm are both generated by discrete transform
gradients, the isotropic model may cause obvious blurring
artifacts for HSI noise removal [23], which inspires us to

Fig. 2. Gradient images of the HSI cube in three different directions.
(a) Original image. (b) Gradient image from the spatial horizontal direction.
(c) Gradient image from the spatial vertical direction. (d) Gradient image from
the spectral direction.

exploit the anisotropic TV norm in our model. For an HSIX ,
the anisotropic SSTV norm can be described as

�X�SSTV = �DX �1 = �DhX �1 + �DvX�1 + �DsX�1 (2)

where Dh, Dv , Ds ∈ R
nl×nc×nb denotes the first-order forward

finite-difference operators along the spatial horizontal, spatial
vertical, and spectral directions, respectively. For the pixel at
the spatial location (i, j) and the kth spectral band X (i, j, k),
each operator is defined as follows:

DhX = X (i, j + 1, k) − X (i, j, k)

DvX = X (i + 1, j, k) − X (i, j, k)

DsX = X (i, j, k + 1) − X (i, j, k). (3)

III. SSTV-REGULARIZED NONLOCAL LOW-RANK

TENSOR DECOMPOSITION FOR HSI DENOISING

A. Problem Formulation

In the real world, HSIs are usually corrupted by various
types of noise during the acquisition and transmission, such
as the Gaussian noise, impulse noise, stripes, and dead pixels
or lines. For an observed HSI Y ∈ R

nl×nc×nb , nb represents the
number of spectral bands, and nl , nc are the width and height
of the image, respectively. The mixed noise in hyperspectral
remote sensing images can be divided into two parts according
to the noise density distribution: the Gaussian noise and the
sparse noise, where the sparse noise includes stripes, dead
pixels or lines, and impulse noise [27]–[29]. To account
for this, the noise degradation model of an HSI can be
expressed as

Y = X + N + S (4)

where X ∈ R
nl×nc×nb represents a clean HSI cube. N ∈

R
nl×nc×nb and S ∈ R

nl×nc×nb are the Gaussian noise and
sparse noise, respectively. The final aim of HSI denoising is
to recover X from Y .

B. Proposed TV-NLRTD Model

In this section, we first introduce the nonlocal low-rank
tensor decomposition (NLRTD) model and then present the
proposed TV-NLRTD.

Since the clean HSI is high-dimensional data with a low-
dimensional structure, the low-rank-based HSI mixed-noise
removal methods have achieved good performances by exploit-
ing this type of prior information [18], [31], [51]. However,
the traditional low-rank-based HSI mixed-noise removal meth-
ods are based on either a local low-rank prior or a global low-
rank regularization, which ignores the nonlocal self-similarity



3074 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 5, MAY 2020

of the hyperspectral remote sensing image. Inspiringly, with
the consideration of the great success achieved by the nonlocal
self-similarity in natural image [14], [16], [19], [56] and
HSI [43], [47], [50], [58] denoising, we propose a nonlocal
low-rank tensor model for HSI mixed-noise removal. Under
the image degradation model (4), we explore the nonlocal
similarity of the clean image X and propose an NLRTD
method. The proposed method can be formulated as

min
1

2
�Y − X − S�2

F + λ2�S�1 + λ3�X�N L . (5)

The last item is the nonlocal low-rank regularizer, for which
the nonlocal low-rank approximation �X�N L is described as
follows. First, the clean image X is segmented into many over-
lapping 3-D blocks of size w×w×nb to build a 3-D patch set
S : S = {Pi, j ∈ R

w×w×nb }1≤i≤nl−w+1,1≤ j≤nc−w+1. By clus-
tering the patch set S into K clusters with the k-means++
algorithm [42], the constructed fourth-order tensor with the
size w × w × nb × Np is formed by a group of nonlocal
similar cubes, where Np is the number of nonlocal similar
patches in the pth cluster. We denote R pX as the constructed
fourth-order tensor for the pth cluster. Since each cluster has
a low-rank structure from nonlocal and spectral perspectives,
R pX can then be ideally approximated by a low-rank tensor
Lp , i.e., RpX ≈ Lp . Thus, the nonlocal regularization can be
formulated as

�X�N L =
K�

p=1

�Rp(X ) − Lp�2
F . (6)

By summing all the clusters with an averaging operator,
the nonlocal low-rank approximation term XN L can be easily
derived as

XNL =
��

p

RT
p Rp

�−1�
p

RT
pLp. (7)

Since Lp is a low-rank tensor, it can be modeled by the
Tucker decomposition as follows:

Lp = Gp ×1 U1p ×2 U2p ×3 U3p ×4 U4p (8)

where Gp is the core tensor, and U1p, U2p, U3p, U4p are factor
matrices with orthogonal columns. Thus, the NLRTD model
for mixed-noise denoising can be formulated as

min
X ,S,Gp,Uip

1

2
�Y − X − S�F + λ2�S�1 + λ3

×
�

p

�RpX−Gp×1U1p×2 U2p×3 U3p×4 U4p�2
F

s.t. UT
ipUip = I, (i = 1, 2, 3, 4) (9)

where λ2, λ3 are the regularization parameters. The nonlocal
low-rank regularizer is an extension of the global low-rank reg-
ularizer described as �X − G ×1 U1 ×2 U2 ×3 U3 ×4 U4�2

F .
However, compared to the global low-rank regularizer, the
nonlocal low-rank regularizer has the ability to simultane-
ously capture the spatial self-similarity and spectral correlation
by adopting low-rank tensor approximation to process each
nonlocal similarity group tensor. Thus, the proposed model
has the ability to boost the denoising performance. Stripes

and other kinds of noise such as impulse noise and dead
pixels or lines only occupy a very small proportion in the
whole image. Accordingly, this noise part can be regarded as
the sparse noise �S�1 and regularized by the �1-norm [26].
Adding a sparse part is more conducive to maintaining the
texture details of the image. Unlike the previous nonlocal-
based approaches, the proposed method considers not only
the nonlocal low-rank prior but also the global piecewise
smoothness across the clean HSI, thus boosting the denoising
performance.

The nonlocal low-rank regularizer segments the image X
into cubes, denoises each cube group separately, and finally
merges the denoised patches into the whole image. How-
ever, this procedure ignores the global smoothness of the
image X . Inspiringly, we integrate both the nonlocal low-
rank tensor decomposition and the SSTV model to simulta-
neously explore the global smoothness, nonlocal similarity,
and spectral low-rank property for HSI denoising. We denote
D = [DT

h , DT
v , DT

s ]T as the concatenation of the three TV
operations. The proposed TV-NLRTD method is then formu-
lated as

min
X ,S,Gp,Uip

1

2
�Y − X − S�2

F + λ1�DX �1 + λ2�S�1 + λ3

×
�

p

�RpX−Gp ×1U1p×2 U2p×3U3p ×4 U4p�2
F

s.t. UT
ipUip = I, (i = 1, 2, 3, 4). (10)

Such integrative consideration exploits the inherent spectral
and spatial correlation in the clean HSI and the complexity
of the noise, thus helps in the separation of mixed noise
and the preservation of edge information. It is clear that the
proposed model (10) is a nonconvex optimization problem due
to the nonconvexity of the Tucker decomposition. To solve
the equation optimization, we employ the ADMM [32], [59]
algorithm, dividing the complex optimization (10) into several
simple subproblems [56]. Specifically, the nonconvex opti-
mization of the Tucker decomposition can be efficiently solved
by the higher order orthogonal iteration (HOOI) algorithm [5].
Although the theoretical convergence is not guaranteed,
we present the convergence of the objective values via the
experiments. More details of the algorithm are presented in
Section III-C.

C. Optimization Algorithms

For efficiency, the variable splitting method [21] is
employed to solve the proposed model. The TV-NLRTD
method can be converted into an equality-constrained problem
by introducing the augmented variables F and Z

min
X ,F ,Z,S,Gp,Uip

1

2
�Y − X − S�2

F + λ1�F�1 + λ2�S�1 + λ3

×
�

p

�RpX − Gp ×1 U1p ×2 U2p

×3 U3p ×4 U4p�2
F

s.t. DZ = F ,X = Z, UT
ipUip = I, (i = 1, 2, 3, 4).

(11)
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Equation (11) can be optimized with the ADMM algorithm.
The augmented Lagrangian function of (11) is as follows:

L(X ,S,F ,Z,Gp , Uip , Q1, Q2)

= 1

2
�Y − X − S�2

F + λ1�F�1

+ μ

2
�DZ−F − Q1�2

F +λ2�S�1+ μ

2
�X−Z−Q2�2

F + λ3

×
�

p

�RpX − Gp ×1 U1p ×2 U2p ×3 U3p ×4 U4p�2
F

s.t. UT
ipUip = I, (i = 1, 2, 3, 4) (12)

where μ is the penalty parameter and Q1, Q2 are the Lagrange
multipliers. Equation (12) can be decomposed into several
subproblems for each variable, and the solution of the model
can be established by iteratively optimizing the corresponding
subfunctions.

1) Update F : By fixing the other variables, the optimization
function is

F (k+1) = arg min
F

λ1�F�1 + μ

2
�DZ − F − Q1�2

F . (13)

With the introduction of the soft-thresholding operator

Soft(x, λ) =

⎧⎪⎨
⎪⎩

x − λ, if x > λ

x + λ, if x < λ

0, otherwise.

(14)

We can then update F as

F (k+1) = soft(DZ − Q1, λ1/μ). (15)

2) Update Z: While fixing the other variables, the opti-
mization is equivalent to the following:

Z(k+1) = arg min
Z

μ

2
�DZ − F − Q1�2

F

+ μ

2
�X − Z − Q2�2

F . (16)

As can be seen, (16) is a convex quadratic optimization
problem with the following closed-form solution:

Z(k+1) = (DT D + I)−1(DT F + DT Q1 + X − Q2). (17)

3) Update {Gp, Uip}: While fixing the other variables

{Gp, Uip} = arg min
G,Ui

�
p

�RpX − Gp ×1 U1p ×2 U2p

×3U3p ×4 U4p�2
F

s.t. UT
ipUip = I (i = 1, 2, 3, 4). (18)

The classic HOOI algorithm [5] can be used to approx-
imately solve the optimization problem (18) to obtain
{Gp, Uip}.

4) Update X : While fixing the other variables, and by using
(7), the optimization is equivalent to

X (k+1) = arg min
X

1

2
�Y − X − S�2

F + μ

2
�X − Z − Q2�2

F

+ λ3 ×
�

p

�RpX − Gp ×1 U1p ×2 U2p

×3U3p ×4 U4p�2
F . (19)

Fig. 3. (a) HYDICE Washington DC Mall data set. (b) Pavia city center
data set used in the simulated data experiments.

The solution of (19) is as follows:

X (k+1)

=
�

μI + I + λ3

�
p

RT
p Rp

�−1

×
�

Ω− λ3

�
p

RT
pGp ×1 U1p ×2 U2p ×3 U3p ×4 U4p

�

(20)

where

Ω= Y − S + μ ∗ (Z + Q2).
5) Update S: While fixing the other variables

S(k+1) = arg min
S

1

2
�Y − X − S�2

F + λ2�S�1. (21)

Equation (21) is also a soft-thresholding problem and has the
solution

S(k+1) = soft(Y − X , λ2). (22)

6) Update the Multipliers Q1, Q2:

Q(k+1)
1 = Q(k)

1 − (DZ − F)

Q(k+1)
2 = Q(k)

2 − (X − Z). (23)

The procedure of the proposed TV-NLRTD method is
summarized in Algorithm 1. As can be seen, the inputs are
as follows: the noisy HSI Y ∈ Rnl×nc×nb , the block size
w×w×nb for nonlocal searching, the stopping criterion ε, and
the regularization parameters λ1, λ2, λ3. For the experiment
described in Section IV, the block size w × w × nb was set
as 8 × 8 × nb, and the step size was set as 4 × 4 × nb.
The stopping criterion ε was set to 1e − 6. We adopt the
well-known AIC/MDL method to estimate the rank of each
mode Lp [47]. The cluster number value is estimated via
nl × nc/100, as in [47]. At the beginning of the iteration,
we initialize the variables X = Z = S = 0 and the multipliers
Q1 = Q2 = 0. The final output of Algorithm 1 is the restored
HSI X ∈ Rnl×nc×nb .

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we describe the experiments undertaken
with both simulated and real data sets to verify the
efficiency and practicability of the proposed method for
HSI denoising. For comparison, six different HSI denois-
ing methods were employed as benchmarks in the experi-
ments, i.e., block-matching and 4-D filtering (BM4D) [46],
TDL [47], LRMR [27], TV-regularized low-rank matrix
factorization (LRTV) [31], TV-regularized low-rank con-
straint and SSTV (LSSTV) [40], and SSTV-regularized local
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Fig. 4. Washington DC Mall image before and after denoising. (a) Original false-color image (R: 180, G: 61, B: 9). (b) Simulated noisy image in Case 2.
The restored images of (c) BM4D, (d) TDL, (e) LRMR, (f) LRTV, (g) LSSTV, (h) LLRSSTV, and (i) TV-NLRTD.

Fig. 5. Pavia city center image before and after denoising. (a) Original image of band 51. (b) Simulated noisy image in Case 2. The restored images of
(c) BM4D, (d) TDL, (e) LRMR, (f) LRTV, (g) LSSTV, (h) LLRSSTV, and (i) TV-NLRTD.

Algorithm 1 TV-NLRTD Algorithm

Input: The noisy HSI Y ∈ Rnl×nc×nb , stopping criterion ε,
block size w × w × nb, regularization parameters λ1, λ2, λ3
Output: The restored HSI X ∈ Rnl×nc×nb

Initialize: X = Z = S = 0, Q1 = Q2 = 0, μ = 102, and
k = 0
Repeat until convergence

1. Update F via (16).
2. Update Z via (17).
3. Construct the non-local low-rank tensor (Section 3.2) and
update {Gp, Uip} via (18), and update X via (19).
4. Update S via (22).
5. Update Q1, Q2 via (23).
6. Update the iterations: k := k + 1

Check the convergence conditions:
∥
∥X (k)−X (k+1)

∥
∥

2
F

�Y�2
F

≤ ε

low-rank matrix recovery (LLRSSTV) [51]. Each band of
the HSI was first normalized to the range [0, 1]. In the
experiments, all the parameters of the comparison algorithms
were fine-tuned, as described in their reference articles.

A. Simulated Data Experiments

Two public hyperspectral data sets—the Washington DC
Mall data set and the Pavia city center data set—were
employed in the simulated experiments. The Washington
DC Mall data set (available at: https://engineering.purdue.
edu/∼biehl/MultiSpec/hyperspectral.html) was acquired by
the hyperspectral digital imagery collection experiment
(HYDICE) and has a size of 1208 × 307 × 191. A subimage
of size 256 × 256 × 191 was selected in the experiment,
as shown in Fig. 3(a). The Pavia city center data set was
collected by the Reflective Optics System Imaging Spectrom-
eter [61]. After removing some heavily noise-contaminated
bands, a subimage of size 200 × 200 × 80 was used in the
experiment, as presented in Fig. 3(b).

In the simulated experiments, several types of noise were
added to the two HSI data sets as the following three cases:

Case 1: The same intensity of the Gaussian noise and
impulse noise was added to each band. The percentage of the

impulse noise was varied from 0.05 to 0.2. The variance of
the Gaussian noise was increased from 0.025 to 0.1.

Case 2: Different intensity Gaussian noise and impulse
noise were added for the different bands. The variance of the
added Gaussian noise was randomly varied between 0 and 0.2,
and the percentage of the impulse noise was randomly selected
from 0 to 0.2 in the same way.

Case 3: Stripes were randomly added to 20% of the bands
on the basis of Case 2. The numbers of stripes for each band
were randomly selected from 20 to 40.

1) Visual Quality Comparison: Figs. 4–7 present the visual
effects of the different denoising methods for the two simu-
lated data sets in Case 2. The false-color composite images by
bands 180, 61, and 9 of the Washington DC Mall data set and
the simulated noisy image are presented in Fig. 4(a) and (b),
respectively. The original band 51 of the Pavia city cen-
ter data set and the simulated noisy image is displayed
in Fig. 5(a) and (b), respectively. Figs. 4(c)–(i) and 5(c)–(i)
display the denoising results of the different methods. In
order to observe the local detail, magnified results of parts
of Figs. 4 and 5 are shown in Figs. 6 and 7, respectively.
According to Figs. 6 and 7, it is clear that BM4D and TDL
cannot remove the heavy Gaussian noise and impulse noise.
LRMR eliminates more mixed noise than these three methods
but still leaves small amounts of residual noise. It can be
seen that LRTV, LSSTV, and LLRSSTV obtain better visual
performances; however, they both smooth the image details to
a certain degree, e.g., the building edge information is blurred.
In the meantime, it is clear that the proposed TV-NLRTD
method achieves the best visual performance in obtaining a
clean image and retaining the essential edge structures. This is
mainly because the TV-NLRTD method effectively combines
the nonlocal and local information from both the spectral and
spatial perspectives.

For a more intuitive comparison of the different recovery
performances, Figs. 8 and 9 present the spectral signatures of
typical features of the two simulated data sets. Fig. 8 shows
the spectrum of the pixel (86, 160) from the Washington DC
Mall image, before and after restoration in simulated Case 2,
in which this pixel represents the “Grasslands” class. Fig. 9
displays the spectrum of the pixel (145, 110) from the Pavia
city center image, before and after restoration in simulated
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Fig. 6. Magnified results from Fig. 4. (a) Original false-color image (R: 180, G: 61, and B: 9). (b) Noisy image. The restored image of (c) BM4D, (d) TDL,
(e) LRMR, (f) LRTV, (g) LSSTV, (h) LLRSSTV, and (i) TV_NLRTD.

Fig. 7. Magnified results from Fig. 5. (a) Original image of band 51. (b) Noisy image. The restored images of (c) BM4D, (d) TDL, (e) LRMR, (f) LRTV,
(g) LSSTV, (h) LLRSSTV, and (i) TV-NLRTD.

Fig. 8. Spectrum of the pixel (86, 160) from the Washington DC Mall image before and after restoration in Case 2. (a) Original. (b) Noisy. (c) BM4D.
(d) TDL. (e) LRMR. (f) LRTV. (g) LSSTV. (h) LLRSSTV. (i) TV-NLRTD.

Fig. 9. Spectrum of the pixel (145, 110) from the Pavia city center image before and after restoration in Case 2. (a) Original. (b) Noisy. (c) BM4D.
(d) TDL. (e) LRMR. (f) LRTV. (g) LSSTV. (h) LLRSSTV. (i) TV-NLRTD.

Fig. 10. Difference between the spectrum of the noise-free pixel (86, 160) from the Washington DC Mall image before and after restoration in Case 2.
(a) Noisy. (b) BM4D. (c) TDL. (d) LRMR. (e) LRTV. (f) LSSTV. (g) LLRSSTV. (h) TV-NLRTD.

Case 2, in which this pixel belongs to the “Building” class.
From Figs. 8(c) and 9(c), it can be observed that the simulated
noise causes evident jagged distortion in the spectral curves.
Clearly, it can be seen that the spectral curves of the proposed
TV-NLRTD method are much smoother than those of the
other methods, for both data sets. Furthermore, the difference
between the recovered spectral curves and the spectrum of
the noise-free pixel (86, 160) from the Washington DC Mall
image and pixel (145, 110) from the Pavia city center image is
presented in Figs. 10 and 11, respectively. According to Figs.
10 and 11, it is clear that the proposed TV-NLRTD method
shows the smallest difference with the clean pixel spectra,
which proves that the denoising performance of the proposed
method is better than that of the other benchmark methods,
and it preserves the spectral information well.

Figs. 12 and 13 present the vertical profiles of some typical
bands for the two simulated data sets in Case 2. Fig. 12 shows
the vertical mean profiles of band 20 of the Washington DC

Mall image before and after restoration. Fig. 13 displays the
vertical profiles of band 31 of the Pavia city center image. The
vertical axis represents the mean digital number (DN) value
of each column, and the horizontal axis represents the column
number of the HSI. From Figs. 12(b) and 13(b), it can be
seen that rapid fluctuations occur due to the existence of the
mixed noise. As shown in Figs. 12(c)–(i) and 13(c)–(i), it can
be clearly observed that the proposed TV-NLRTD method
produces the closest curves to the original HSI. It can, thus,
be considered that the proposed method also retains the spatial
information well.

2) Quantitative Comparison: To give a comprehensive
quantitative evaluation of the denoising performance, the fol-
lowing evaluation indices are employed for the results of the
simulated experiments: the peak signal-to-noise ratio (PSNR),
the structural similarity (SSIM) index [52], the Erreur Relative
Globale Adimensionnelle de Synthese (ERGAS) [53], and the
spectral angle mapper (SAM) [54]. The values of PSNR and
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Fig. 11. Difference between the spectrum of the noise-free pixel (145, 110) from the Pavia city center image before and after restoration in Case 2.
(a) Noisy. (b) BM4D. (c) TDL. (d) LRMR. (e) LRTV. (f) LSSTV. (g) LLRSSTV. (h) TV-NLRTD.

Fig. 12. Vertical profiles of band 20 of the Washington DC Mall image before and after restoration in Case 2. (a) Original. (b) Noisy. (c) BM4D. (d) TDL.
(e) LRMR. (f) LRTV. (g) LSSTV. (h) LLRSSTV. (i) TV-NLRTD.

Fig. 13. Vertical profiles of band 31 of the Pavia city center image before and after restoration in Case 2. (a) Original. (b) Noisy. (c) BM4D. (d) TDL.
(e) LRMR. (f) LRTV. (g) LSSTV. (h) LLRS-STV. (i) TV-NLRTD.

Fig. 14. PSNR and SSIM values of each band in the experiment with the
Washington DC Mall image in Case 2. (a) PSNR. (b) SSIM.

Fig. 15. PSNR and SSIM values of each band in the experiment with the
Pavia city center image in Case 2. (a) PSNR. (b) SSIM.

SSIM are proportional to the quality of the image, while the
values of ERGAS and SAM are inversely proportional to the
quality of the image.

The quantitative assessment results for the different denois-
ing methods with the Washington DC Mall and Pavia city
center data sets are shown in Tables I and II, respectively. The
best results for each quality index are labeled in boldface,

Fig. 16. (a) AVIRIS Indian Pines data set used in the real data experiments.
(b) HYDICE Urban data set used in real data experiments.

and the second-best results are underlined. It can be clearly
observed that the proposed TV-NLRTD method outperforms
all the other algorithms in almost all four quantitative indices.
Meanwhile, it can be seen that with an increase in the intensity
of the mixed noise, the superiority of the proposed algorithm
becomes more obvious. In addition, Figs. 14 and 15 present the
PSNR and SSIM values for each band in Case 2. From these
results, it can be shown more intuitively that the proposed
TV-NLRTD achieves the best denoising performance in almost
all the bands on the two simulated data sets. This demonstrates
that the proposed TV-NLRTD method can preserve the spatial
and spectral structures of the original HSI to the greatest extent
while effectively removing the mixed noise.

B. Real Data Experiments

We chose two real HSI data sets acquired by the NASA
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and
HYDICE sensors to verify the effectiveness and practicability
of the proposed method.
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TABLE I

QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT DENOISING METHODS ON THE WASHINGTON DC MALL DATA SET

Fig. 17. Indian Pines data set image after denoising. (a) Original image of band 1. The restored image of (b) BM4D, (c) TDL, (d) LRMR, (e) LRTV,
(f) LSSTV, (g) LLRSSTV, and (h) TV-NLRTD.

Fig. 18. Indian Pines data set image after denoising. (a) Original image of band 109. The restored images of (b) BM4D, (c) TDL, (d) LRMR, (e) LRTV,
(f) LSSTV, (g) LLRSSTV, and (h) TV-NLRTD.

1) AVIRIS Indian Pines Data Set: The Indian Pines
data set (available at: https://engineer-ing.purdue.edu/∼biehl/
MultiSpec/hyperspectral.html) was acquired by the NASA
AVIRIS sensor and has a size of 145 × 145 × 220. As shown
in Fig. 16(a), the data set is corrupted by dense noise, impulse
noise, atmospheric effects, and water absorption.

Figs. 17 and 18 show the visual performance of the
different methods for some typical bands. For the heav-
ily contaminated HSI bands, such as band 1 and band
109, the TDL and BM4D methods perform unsatisfactorily
in image restoration. The LRMR, LSSTV, and LLRSSTV

methods achieve a better performance than these three meth-
ods but still leave a part of the mixed noise, such as
the horizontal stripes shown in Fig. 17(d) and (g) and the
Gaussian/impulse noise shown in Fig. 18(d) and (g). The
LRTV method removes most of the noise, but, unfortunately,
as shown in Figs. 17(e) and 18(e), the local details tend to be
oversmoothed at the same time. From Figs. 17(h) and 18(h),
it can be seen that the proposed TV-NLRTD method sup-
presses most of the noise effectively while preserving the
image details at the same time, thus achieving the best visual
results.
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TABLE II

QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT DENOISING METHODS ON THE PAVIA CITY CENTER DATA SET

Fig. 19. Spectrum of the pixel (80, 80) from the Indian Pines restoration results. (a) Original. (b) BM4D. (c) TDL. (d) LRMR. (e) LRTV. (f) LSSTV.
(g) LLRSSTV. (h) TV-NLRTD.

Fig. 20. Spectrum of the pixel (30, 60) from the Indian Pines restoration results. (a) Original. (b) BM4D. (c) TDL. (d) LRMR. (e) LRTV. (f) LSSTV.
(g) LLRSSTV. (h) TV-NLRTD.

For a more detailed comparison, the spectral signatures of
some typical objects are presented in Figs. 19 and 20. The
horizontal axis represents the number of spectral bands, and
the vertical axis represents the DN values of Figs. 19 and 20.

According to the official description of the Indian Pines data
set, pixel (80, 80) represents the “Corn-notill” class and pixel
(30, 60) belongs to the “Grass-trees” class. In Figs. 19(b)–(d)
and 20(b)–(d), the LRMR, TDL, and ITSReg methods cause
evident jagged distortion in the recovered spectra, which
indicates that these methods fail to remove the heavy noise.
Clearly, it can be seen that the curve of the proposed
TV-NLRTD method is much smoother than those of the other
methods, which further illustrates that the proposed model is
better able to maintain the spectral information.

2) HYDICE Urban Data Set: The Urban data set was
acquired by the HYDICE sensor and has a size of 307 × 307
× 210. A subimage of size 200 × 200 × 210 was selected
in this experiment. As shown in Fig. 16(b), this data set is
contaminated with the Gaussian noise, deadlines, and stripes.

Figs. 21 and 22 present the denoising results for band
139 and band 206 of the Urban data set via the different
methods. From Figs. 21 and 22, it can be observed that stripes,
deadlines, and the Gaussian noise result in significant corrup-
tion of the Urban data set. It is clear that the nonlocal-based
methods, i.e., BM4D and TDL, cannot effectively remove
the mixed noise. Since the LRTV, LSSTV, and LLRSSTV
methods utilize TV regularization, they can suppress this
kind of noise, to some degree. By combining SSTV and the
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Fig. 21. HYDICE Urban data set image after denoising. (a) Original image of band 139. The restored images of (b) BM4D, (c) TDL, (d) LRMR, (e) LRTV,
(f) LSSTV, (g) LLRSSTV, and (h) TV-NLRTD.

Fig. 22. HYDICE Urban data set image after denoising. (a) Original image of band 206. The restored images of (b) BM4D, (c) TDL, (d) LRMR, (e) LRTV,
(f) LSSTV, (g) LLRSSTV, and (h) TV-NLRTD.

Fig. 23. Vertical mean profiles of band 139 in the Urban image restoration experiment. (a) Original. (b) BM4D. (c) TDL. (d) LRMR. (e) LRTV. (f) LSSTV.
(g) LLRSSTV. (h) TV-NLRTD.

Fig. 24. Vertical mean profiles of band 206 in the Urban image restoration experiment. (a) Original. (b) BM4D. (c) TDL. (d) LRMR. (e) LRTV. (f) LSSTV.
(g) LLRSSTV. (h) TV-NLRTD.

Fig. 25. Denoising performance with different values of λ1. (a) PSNR.
(b) SSIM.

nonlocal low-rank decomposition, the proposed TV-NLRTD
method can eliminate the mixed noise to the greatest extent
while preserving the image details.

The vertical mean profiles of band 139 and band 206 are
presented in Figs. 23 and 24 to allow a more intuitive
verification of the denoising performance. The vertical axis
represents the DN value, and the horizontal axis repre-
sents the column number in Figs. 23 and 24. The rapid
fluctuation in Figs. 23(a) and 24(a) indicates the existence

Fig. 26. Denoising performances with different values of λ2. (a) PSNR.
(b) SSIM.

of sparse noise. From Figs. 23(a) and 24(a), it can be
seen that only the LRMR, LRTV, LSSTV, LLRSSTV, and
TV-NLRTD methods can remove the stripes in the vertical
direction, thus verifying the conclusion made from the visual
effects. However, the proposed TV-NLRTD method provides
a smoother curve in the vertical direction, indicating that the
stripes and other types of noise have been eliminated more
effectively.
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Fig. 27. Denoising performance with the iterations. (a) PSNR. (b) Objective
values defined by (12).

TABLE III

RUN TIMES (IN SECONDS) OF THE DIFFERENT METHODS IN THE REAL

DATA EXPERIMENTS

C. Discussion

1) Parameter Analysis: In the TV-NLRTD method,
the denoising performance is influenced by the values of the
regularization parameters and the block size for the nonlocal
similarity searching. In the optimization procedure, parameter
λ3 represents the balance between the nonlocal low-rank item
and the global data fidelity item in the whole model. We fixed
λ3 as 1, as in [48]. Thus, in this section, we only discuss
the SSTV regularization parameter λ1 and the sparse noise
regularization parameter λ2.

Parameter λ1 balances the weight of the global SSTV
regularization. By fixing λ2 as the optimum value, we adjusted
λ1 within the scope of [0, 0.006]. PSNR and SSIM values
versus parameter λ1 are presented in Fig. 25 for the simulated
Pavia data set in noise in Case 3. Clearly, the denoising
performance is relatively robust to parameter λ1. For the
simulated and real data experiments, λ1 was set to 0.001.

Parameter λ2 restrains the sparsity of the sparse noise.
First, parameter λ1 was fixed as the optimum value, and we
then changed parameter λ2 from 0.02 to 0.1 with a step size
of 0.02. Fig. 26 shows the PSNR and SSIM values versus
parameter λ2, where it can be observed that the increase in
performance is very fast with the growth of λ2 and reaches a
peak when it reaches 0.04. The performance then gradually
declines. This demonstrates that parameter λ2 is relatively
stable within a certain range. Parameter λ2 was set to 0.04 in
all the experiments, for a good denoising performance.

2) Convergence Illustration: To illustrate the convergence
of TV-NLRTD, the PSNR and the objective values (12) of
each iteration for the simulated Pavia data set in Case 2 are
presented in Fig. 27. As shown in Fig. 27, it is clear that the
relative changes in PSNR and the objective values are gradual
as the iterative process takes place, which demonstrates that
the proposed TV-NLRTD method can converge to a good local
solution.

3) Time Cost: We conducted all the experiments in
MATLAB 2014a with an Intel i7 CPU at 2.60 GHz and 12 GB
of memory. Table III presents the time cost of the different
methods for the two real data sets. From Table III, it can be

observed that the proposed method is competitive compared
to the other state-of-the-art methods.

V. CONCLUSION

In this article, we have proposed a novel SSTV TV-NLRTD
method for the removal of mixed noise in hyperspectral
imagery. With the nonlocal similarity of the HSI cube, a non-
local low-rank tensor decomposition model is built to explore
the low-rank property of the similar HSI 3-D cubes. SSTV
regularization is then further integrated to exploit the local
piecewise smoothness of the clean HSI. Finally, the efficient
ADMM algorithm is utilized to solve the resulting TV-NLRTD
method. Two simulated data experiments and two real data
experiments were conducted to illustrate the effectiveness of
the proposed TV-NLRTD method. The experimental results
confirmed that the proposed TV-NLRTD method achieves a
superior denoising performance, from both the visual and
quantitative evaluations.

Nevertheless, there is still room for improvement of the
proposed TV-NLRTD algorithm. As the noise intensity of
different HSI bands varies greatly, a weighting strategy will
be considered by assigning different weights for each band,
according to the noise intensity. In addition, the adaptive deter-
mination of the regularization parameters will be addressed in
our future work.
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